Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Non linear time varying model identification in ill-posed problems corresponding to neural activity estimation from EEG signals

Giraldo Suárez, Eduardo (2013) Non linear time varying model identification in ill-posed problems corresponding to neural activity estimation from EEG signals. Doctorado thesis, Universidad Nacional de Colombia - Sede Manizales.

Texto completo

[img]
Vista previa
PDF - Versión Enviada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

6MB

Resumen

Esta tesis trata el problema inverso dinámico para la reconstrucción de fuentes a partir de señales EEG usando dos métodos: solución del Problema Inverso Dinámico considerando Restricciones Variantes e Invariantes con el Tiempo, y solución del Problema Inverso Dinámico Ponderado. Los métodos discutidos comprenden principalmente dos contribuciones: En primer lugar, la introducción de un modelo discreto no lineal basado en consideraciones fisiológicas que describa adecuadamente la dinámica de la actividad neuronal. En segundo lugar, la estimación de parámetros variantes en el tiempo que permitan mejorar el modelo no lineal, haciéndolo apropiado para la localización de fuentes electroencefalográficas durante actividad normal y patológica, tal como ataques epilépticos. La estimación realizada usando los modelos no lineales propuestos, presenta mejores resultados en términos del error de reconstrucción, comparado con métodos lineales o invariantes con el tiempo, Abstract : This thesis addresses the dynamical inverse problem of EEG source reconstruction by using two main approaches: Dynamic Inverse Problem solution considering Time Varying and Time invariant Constraints, and Weighted Dynamic Inverse Problem solution. Discussed approach of representation comprises two main contributions: Firstly, the introduction of a discrete–time nonlinear model grounded on physiological considerations that explains better the dynamics of the brain neural activity. Secondly, the inclusion of estimation of time varying parameters that allows the enhancement of the nonlinear model, making it suitable for electroencephalographic source localization of such abnormal neuronal activity as epileptic seizures. The estimation that is performed using proposed nonlinear dynamic models with time varying parameters provides an improvement in terms of reconstruction error, if comparing with similar referred linear approximations

Tipo de documento:Tesis/trabajos de grado - Thesis (Doctorado)
Colaborador / Asesor:Castellanos Domínguez, Cesar Germán
Palabras clave:Problema inverso dinámico; identificación de sistemas; estimación de estado, Dynamic inverse problem; system identification; state estimation
Temática:5 Ciencias naturales y matemáticas / Science > 51 Matemáticas / Mathematics
6 Tecnología (ciencias aplicadas) / Technology > 61 Ciencias médicas; Medicina / Medicine & health
6 Tecnología (ciencias aplicadas) / Technology > 62 Ingeniería y operaciones afines / Engineering
Unidad administrativa:Sede Manizales > Facultad de Ingeniería y Arquitectura > Departamento de Ingeniería Eléctrica, Electrónica y Computación
Código ID:10973
Enviado por : Dr Eduardo Giraldo Suárez
Enviado el día :09 Dec 2013 20:05
Ultima modificación:09 Dec 2013 20:05
Ultima modificación:09 Dec 2013 20:05
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox