Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Estimación probabilística del cambio climático en venezuela mediante un enfoque bayesiano

Durán, Alexis and Guenni, Lelys (2010) Estimación probabilística del cambio climático en venezuela mediante un enfoque bayesiano. Revista Colombiana de Estadística; Vol. 33, núm. 2 (2010); 191-218 Revista Colombiana de Estadística; Vol. 33, núm. 2 (2010); 191-218 0120-1751 .

Texto completo

[img]
Vista previa
PDF
2MB
[img] HTML
8kB

URL oficial: http://revistas.unal.edu.co/index.php/estad/articl...

Resumen

El problema del cambio climático es uno de los grandes problemas ambientales que enfrenta la humanidad, ya que ligeras variaciones en las variables climáticas pueden traer graves consecuencias en las actividades económicas y el bienestar humano en general. Hoy en día los modelos de circulación general (MCG) de la atmósfera son la principal herramienta para estudiar los cambios climáticos. El Ministerio del Ambiente y de los Recursos Naturales (MARN) lideró en el año 2005 la Primera Comunicación Nacional en Cambio Climático de Venezuela, utilizando salidas de 16 MCGs a escala global (resolución de 5°x 5°), cuyas proyecciones estiman incrementos para la temperatura y disminución en la precipitación para los próximos años. Cada MCG arroja diferentes resultados generando incertidumbre en la señal del cambio climático futuro. Este trabajo utiliza un enfoque Bayesiano y una extensión del método Reliability Ensemble Average (REA) (Tebaldi et al. 2005), combinando las salidas (presente y futura) de precipitación y temperatura de los 16 MCG con observaciones de las condiciones climáticas actuales, con el fin de determinar las distribuciones de probabilidad del cambio climático futuro para estas dos variables climáticas en nueve regiones de Venezuela. Para el estudio se toman en cuenta dos criterios: sesgo, el cual considera la diferencia entre las salidas de los modelos y el clima actual, y convergencia, que cuantifica las diferencias en los cambios simulados por los múltiples modelos del clima futuro. El principal resultado obtenido del trabajo es que aún existe considerable incertidumbre en las proyecciones de los MCG, ya que estos no incluyen todos los aspectos sobre el funcionamiento del sistema climático. También se pudo establecer que mientras menor sea la variabilidad natural de la variable climática, más efectiva será su proyección., The changing climate is one of the main environmental problems facing humanity, since slight variations in the climate variables might have terrible consequences in the economic activities and human well-being. Nowadays atmospheric Global Circulation Models (GCMs) are the main tools to study changing climate. The Ministry of Environment and Natural Resources (MENR) led in 2005 the First Communication in Climate Change of Venezuela, using the outputs of 16 GCMs at a global scale (resolution of 5°x 5°) whose projections estimate increasing temperature and diminishing precipitation in the coming years. Each GCM gives different results, generating uncertainty in the future changing climate signal. This work uses a Bayesian approach and an extension of the Reliability Ensemble Average (REA) (Tebaldi et al. 2005) method, combining the outputs (present and future) of precipitation and temperature of the 16 GCMs with observations of present climate conditions, to determine the probability distributions of future changing climate change for these two climate variables in 9 regions in Venezuela. For this study, two criteria are used: bias, which considers the difference between the model outputs and the present climate; and convergence, which quantifies the differences among the simulated changes of future climate by multiple models. The main result of this work is that a large amount of uncertainty still exists in the GCMs projections, since they as yet do not include all aspects of the climate system functioning. It was also concluded that the lower the natural variability in the climate variable, the more effective is its projection.

Tipo de documento:Artículo - Article
Palabras clave:estimación Bayes, inferencia posterior, modelo probabilístico, Bayes estimation, Probabilistic model, Posterior inference
Unidad administrativa:Revistas electrónicas UN > Revista Colombiana de Estadística
Código ID:30857
Enviado por : Dirección Nacional de Bibliotecas STECNICO
Enviado el día :30 Junio 2014 14:11
Ultima modificación:06 Junio 2018 10:46
Ultima modificación:06 Junio 2018 10:46
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox