Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Una generalización de la función aritmética g(n)=∏_(j=1)^n(j,n) y algunas de sus aplicaciones

Niño Rojas, Francisco (2010) Una generalización de la función aritmética g(n)=∏_(j=1)^n(j,n) y algunas de sus aplicaciones. Maestría thesis, Universidad Nacional de Colombia.

Texto completo

[img]
Vista previa
PDF - Versión Aceptada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

239kB

Resumen

Para una función aritmética h(x), consideramos la función g(n;h)=∏_(j=1)^n h((j,n)), donde (j,n) es el máximo común divisor de j y n. Damos evaluaciones en términos de potencias de primos, series de Dirichlet, y comportamientos asintóticos para g(n;h). La serie de Dirichlet da lugar a varias identidades donde participa la función zeta de Riemann. Además, se discuten algunos comportamientos asintóticos para el caso especial g(n)=g(n;e) donde e(x)=x. Finalmente mencionamos algunas aplicaciones relacionadas con esta función, por ejemplo, mostrar que para un entero positivo n, el número de soluciones distintas módulo n de la congruencia x^(n-1)≡1(mod n) está dado por la fórmula ∏_(p|n)(p-1,n-1). Otra aplicación se presenta en el estudio de puntos reticulares sobre rectas en el plano: dados dos puntos en el plano P(a,b) y Q(c,d), el número de puntos reticulares sobre el segmento (PQ) ̅ esta dado por (a-c,b-d )+1. / Abstract. For a given arithmetic function h(x), we consider the function g(n;h)=∏_(j=1)^n h((j,n)), where (j,n) is the greatest common divisor of j and n. Evaluations in terms of prime powers, Dirichlet series, and asymptotic formulae involving g(n;h) are given. The Dirichlet series leads to several identities involving the Riemann Zeta function. Also, some asymptotic formulae for the special case g(n)=g(n;e) where e(x)=x are discussed. Finally, some applications related to these functions are discussed: for example, given a positive integer n, the number of distinct solutions modulo n of the congruence x^(n-1)≡1(mod n) is given by the formula ∏_(p|n)(p-1,n-1). Another application arises in the study of lattice points on lines in the plane: given two integer lattice points P(a,b) and Q(c,d), the number of lattice points on the segment (PQ) ̅ is given by (a-c,b-d)+1.

Tipo de documento:Tesis/trabajos de grado - Thesis (Maestría)
Colaborador / Asesor:Albis González, Víctor Samuel
Información adicional:Magister en Matemáticas
Palabras clave:Función aritmética; Serie de Dirichlet; Función Zeta de Riemann; Puntos reticulares; Seudoprimos / Arithmetic function; Dirichlet series; Riemann Zeta function; Lattice points; Pseudo prime
Temática:5 Ciencias naturales y matemáticas / Science > 51 Matemáticas / Mathematics
Unidad administrativa:Sede Bogotá > Facultad de Ciencias > Departamento de Matemáticas
Código ID:3798
Enviado por : Universidad Nacional de Colombia Biblioteca Digital - Sede Bogotá
Enviado el día :26 Julio 2011 12:35
Ultima modificación:26 Julio 2011 12:35
Ultima modificación:26 Julio 2011 12:35
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Registry of Open Access Repositories OpenDOAR Metabiblioteca BDCOL OAIster Red de repositorios latinoamericanos DSpace BASE Open archives La referencia Colombiae Open Access Theses and Dissertations Tesis latinoamericanas CLACSO
Este sitio web se ve mejor en Firefox