Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Evaluación del desempeño de redes neuronales artificiales para estimar propiedades de capas de pavimentos

Beltran, Gloria Inés and Romo, Miguel Pedro (2014) Evaluación del desempeño de redes neuronales artificiales para estimar propiedades de capas de pavimentos. Ingeniería e Investigación; Vol. 34, núm. 2 (2014); 11-16 Ingeniería e Investigación; Vol. 34, núm. 2 (2014); 11-16 2248-8723 0120-5609 .

Texto completo

[img]
Vista previa
PDF
710kB
[img]
Vista previa
PDF
618kB
[img]
Vista previa
PDF
207kB

URL oficial: http://revistas.unal.edu.co/index.php/ingeinv/arti...

Resumen

Una de las principales preocupaciones en la evaluación de la condición estructural de pavimentos flexibles en servicio, es la estimación de propiedades mecánicas de las capas, útiles para el diseño y toma de decisiones en los sistemas de gestión de carreteras. Este problema de identificación de parámetros es realmente complejo, debido al gran número de variables involucradas en el comportamiento de los pavimentos. Para esos fines, se ha considerado modelar la respuesta del pavimentos ante pruebas de campo, mediante soluciones adaptativas o aproximadas no convencionales usando Redes Neuronales Artificiales - RNAs. Las investigaciones previas han demostrado la capacidad excepcional de las RNAs para estimar módulos de capas, a partir de pruebas no destructivas de deflexión; sin embargo, la mayoría de los casos reportados han utilizado datos sintéticos de deflexión, o sistemas de pavimento hipotéticos. En este trabajo se presentan nuevos intentos para retrocalcular los módulos de capa con modelos de RNAs, a partir de una base de datos obtenida de pruebas de deflexión realizadas en campo sobre sistemas de pavimento de tres y cuatro capas; se consideraron estructuras tradicionales y pavimentos con capas de subbase rigidizada. Para el diseño y validación del modelo "óptimo" de RNAs, es decir, la mejor arquitectura posible y el algoritmo de aprendizaje más adecuado, se desarrolló una metodología en tres etapas. La evaluación del modelo neuronal resultante, muestra su capacidad y eficiencia de predicción para resolver un problema complejo de identificación de parámetros en pavimentos., A major concern in assessing the structural condition of existing flexible pavements is the estimation of the mechanical properties of constituent layers, which is useful for the design and decision-making process in road management systems. This parameter identification problem is truly complex due to the large number of variables involved in pavement behavior. To this end, non-conventional adaptive or approximate solutions via Artificial Neural Networks – ANNs – are considered to properly map pavement response field measurements. Previous investigations have demonstrated the exceptional ability of ANNs in layer moduli estimation from non-destructive deflection tests, but most of the reported cases were developed using synthetic deflection data or hypothetical pavement systems. This paper presents further attempts to back-calculate layer moduli via ANN modeling, using a database gathered from field tests performed on three- and four-layer pavement systems. Traditional layer structuring and pavements with a stabilized subbase were considered. A three-stage methodology is developed in this study to design and validate an “optimum” ANN-based model, i.e., the best architecture possible along with adequate learning rules. An assessment of the resulting ANN model demonstrates its forecasting capabilities and efficiency in solving a complex parameter identification problem concerning pavements.

Tipo de documento:Artículo - Article
Información adicional:Los autores o titulares del derecho de autor de cada artículo confieren a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características: 1.    Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la revista Ingeniería e Investigación, la Universidad Nacional de Colombia y ante terceros. 2.    La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la revista Ingeniería e Investigación en el Sistema Open Journal Systems y en la página principal de la revista (www.revistaingenieria.unal.edu.co), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación. 3.    Los autores autorizan a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la revista Ingeniería e Investigación para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión. 4.    Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.
Palabras clave:Civil Engineering, pavement engineering, Artificial neural networks, pavements, non-destructive testing, deflections, layer moduli, Redes neuronales artificiales, pavimentos, auscultación no destructiva, deflexiones, módulos de capa
Unidad administrativa:Revistas electrónicas UN > Ingeniería e Investigación
Código ID:42455
Enviado por : Dirección Nacional de Bibliotecas STECNICO
Enviado el día :13 Septiembre 2014 09:31
Ultima modificación:13 Septiembre 2014 09:31
Ultima modificación:13 Septiembre 2014 09:31
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox