Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Métricas Riemannianas y pseudo-Riemannianas

Likosova de Mejía, Galina (1993) Métricas Riemannianas y pseudo-Riemannianas. Documento de trabajo. Sin Definir.

Texto completo

[img]
Vista previa
PDF - Versión Aceptada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

1MB

Resumen

Una métrica definida en un dominio Ω de una variedad diferenciable permite medir distancias entre puntos Ω, longitudes de vectores y curvas, ángulo entre vectores y entre curvas. Hay diferente manera de definir una métrica en un dominio de una superficie Riemann se introduce vía el teorema Riemenn que afirma que cualquier superficie de Riemann simplemente conexa es conformemente equivalente a uno y solo uno de los siguientes dominios: i) disco unitario D={z ∈C/|z|<- 1} ii) plano complejo C iii) plano complejo extendido C^* C∪ {∞}(ver [L],[Kr]) En particular, si Ω es un dominio simplemente conexo de C^* , en Ω se puede introducir coordenadas locales métricas de D, C o C^*. El presente trabajo está dedicado al estudio de las métricas riemannianas y pseudo- riemannianas en R^n y en plano complejo C . El caso más importantes es de la métrica pseudo- riemannianas (métrica de Lobachevsky) en diferentes dominios de R^n y en particular, la métrica hiperbólica en dominio hiperbólico del plano complejo./Abstract:A metric defined in a domain Ω of a manifold to measure distances between points in Ω, lengths of vectors and curves, angle between vectors and between curves. There are different ways to define a metric on a Riemann surface domain is introduced via Riemenn theorem which states that any simply connected Riemann surface is conformally equivalent to one and only one of the following domains: i) unit disk D = {z ∈ C / | z | ┤ <├ 1} ii) the complex plane C iii) extended complex plane C ^ * C ∪ {∞} (see [L], [Kr]) In particular, if Ω is a simply connected domain of C ^ * in Ω can introduce local coordinates metric D, C ​​or C ^ *. This work is dedicated to the study of Riemannian metrics and pseudo-Riemannian n ^ R in the complex plane C. The most important is the pseudo-Riemannian metric (metric Lobachevsky) in different domains of R ^ n and in particular the hyperbolic domain hyperbolic metric in the complex plane

Tipo de documento:Documento de trabajo - Monograph (Documento de trabajo)
Palabras clave:Geometría diferencial; Matemáticas;Geometría Hiperbólica; Geometría de Riemann; Espacios euclidianos
Temática:5 Ciencias naturales y matemáticas / Science > 51 Matemáticas / Mathematics
Unidad administrativa:Sede Medellín > Facultad de Ciencias > Escuela de Matemáticas > Matemáticas
Código ID:4511
Enviado por : Biblioteca Sede Medellín Universidad Nacional de Colombia
Enviado el día :31 Agosto 2011 22:46
Ultima modificación:31 Agosto 2011 22:46
Ultima modificación:31 Agosto 2011 22:46
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox