Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information

Sandoval Archila, Javier Hernando (2016) High frequency exchange rate prediction using dynamic bayesian networks over the limit order book information. Doctorado thesis, Universidad Nacional de Colombia-Sede Bogotá.

Texto completo

Vista previa
PDF - Versión Aceptada
Available under License Creative Commons Attribution Non-commercial No Derivatives.



Abstract. This work presents a special case of a Dynamic Bayesian Networks (DBN) to capture the USD/COP market sentiment dynamics choosing from uptrend or downtrend latent regimes based on observed feature vector realizations calcu- lated from transaction prices and wavelet-transformed order book volume dy- namics. The DBN learned a natural switching buy/uptrend, sell/downtrend trading strategy using a training-validation framework over one month of market data. The model was tested in the following two months, and its performance was reported and compared to results obtained from randomly classified market states and a feed-forward Neural Network. It is separately assessed the contribution to the model’s performance of the order book in- formation and the wavelet transformation. This work also constructs key trading strategy estimators based on the Ran- dom Entry Protocol over the USD/COP data. This technique eliminates unwanted dependencies on returns and order flow while keeps the natural autocorrelation structure of the Limit Order Book (LOB). It is still con- cluded that the DBN-based model results are competitive with a positive, statistically significant P/L and a well-understood risk profile. Buy-and-Hold results calculated over the testing period are provided for comparison reasons. A general characterization of the USD/COP Limit Order Books and theory behind the Dynamic Bayesian Networks are included as part of the main document.

Tipo de documento:Tesis/trabajos de grado - Thesis (Doctorado)
Colaborador / Asesor:Hernandez, German Jairo
Información adicional:Doctor en Sistemas y Computación. Líınea de Investigación: Computational Finance
Palabras clave:Machine Learning, Dynamic Bayesian Networks, Price Prediction, Order Book Information, Hierarchical Hidden Markov Model, Wavelet Transform
Temática:6 Tecnología (ciencias aplicadas) / Technology
6 Tecnología (ciencias aplicadas) / Technology > 62 Ingeniería y operaciones afines / Engineering
Unidad administrativa:Sede Bogotá > Facultad de Ingeniería > Departamento de Ingeniería de Sistemas e Industrial > Ingeniería de Sistemas
Código ID:55461
Enviado por : Javier Hernando Sandoval
Enviado el día :26 Enero 2017 16:21
Ultima modificación:26 Enero 2017 16:21
Ultima modificación:26 Enero 2017 16:21
Exportar:Clic aquí
Estadísticas:Clic aquí

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox