Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

A co-occurrence region based Bayesian network stepwise remote sensing image retrieval algorithm

Zeng, Rui and Wang, Yingyan and Wang, Wanliang (2018) A co-occurrence region based Bayesian network stepwise remote sensing image retrieval algorithm. Earth Sciences Research Journal, 22 (1). pp. 29-35. ISSN 2339-3459

Texto completo

[img]
Vista previa
PDF - Versión Publicada
Available under License Creative Commons Attribution.

1MB

URL oficial: https://revistas.unal.edu.co/index.php/esrj/articl...

Resumen

Although scholars have conducted numerous researches on content-based image retrieval and obtained great achievements, they make little progress in studying remote sensing image retrieval. Both theoretical and application systems are immature. Since remote sensing images are characterized by large data volume, broad coverage, vague themes and rich semantics, the research results on natural images and medical images cannot be directly used in remote sensing image retrieval. Even perfect content-based remote sensing image retrieval systems have many difficulties with data organization, storage and management, feature description and extraction, similarity measurement, relevance feedback, network service mode, and system structure design and implementation. This paper proposes a remote sensing image retrieval algorithm that combines co-occurrence region based Bayesian network image retrieval with average high-frequency signal strength. By Bayesian networks, it establishes correspondence relationships between images and semantics, thereby realizing semantic-based retrieval of remote sensing images. In the meantime, integrated region matching is introduced for iterative retrieval, which effectively improves the precision of semantic retrieval., A pesar de que muchos investigadores han realizado numerosos trabajos sobre la consulta de imágenes mediante ejemplo y han obtenido grandes logros, poco se ha avanzado en la recuperación de imágenes por teledetección. Tanto la teoría como la aplicación de los sistemas son inmaduros. Ya que las imágenes por teledetección se caracterizan por un gran volumen de información, amplia cobertura, temas difusos y semántica abundante, los resultados de las investigaciones en imágenes naturales e imágenes médicas estos no pueden ser usados directamente en la recuperación de imágenes por teledetección. Incluso en una consulta perfecta de imágenes mediante ejemplo, los sistemas tienen muchas dificultades con la organización de información, almacenamiento y manejo, descripción de características y extracción, medición de similitudes, retroalimentación relevante, modo de servicio de red y diseño e implementación del sistema estructural. Este artículo propone un algoritmo de recuperación de imágenes por teledetección que combina la coocurrencia local de una red bayesiana de recuperación de imagénes con el promedio de potencia de la señal de alta frecuencia. Por las redes bayesianas, se establecen las relaciones de correspondencia entre imágenes y semántica, además de permitir la recuperación de imágenes de teledetección a través de la semántica. Mientras tanto, se desarrolló el módulo de región integrada para la recuperación repetitiva, lo que mejora efectivamente la precisión de la recuperación semántica.

Tipo de documento:Artículo - Article
Palabras clave:Bayesian network, Co-occurrence region, Remote sensing image retrieval, red bayesiana, región de coocurrencia, recuperación de imágenes por teledetección.
Temática:5 Ciencias naturales y matemáticas / Science > 55 Ciencias de la tierra / Earth sciences & geology
Unidad administrativa:Revistas electrónicas UN > Earth Sciences Research Journal
Código ID:64007
Enviado por : Dirección Nacional de Bibliotecas STECNICO
Enviado el día :06 Junio 2018 13:36
Ultima modificación:06 Junio 2018 13:36
Ultima modificación:06 Junio 2018 13:36
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox