Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Forward volumetric modeling framework for realistic head models towards accurate EEG source localization

Cuartas Morales, Ernesto (2018) Forward volumetric modeling framework for realistic head models towards accurate EEG source localization. Doctorado thesis, Universidad Nacional de Colombia sede Manizales.

Texto completo

[img]
Vista previa
PDF - Versión Aceptada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

12MB

Resumen

Synergetic effects connecting spatial and functional neuroimaging techniques allows reduction of the weakness for single method analysis. Specifically, Electroencephalographic (EEG) Source Imaging (ESI) relating structural head models and distributed source localization techniques improves the time and spatial resolution of single MRI or EEG analysis. The construction of more accurate forward models for ESI solutions, holding better precision and less computational burden is an important task for investigative purposes, but also for surgery planning and disorder treatments. In this regard, we present a novel finite-difference EEG forward problem solution that we called ghost-filling finite difference anisotropic reciprocity method (GFDARM). First, we introduce a finite difference numerical solution for the conservative form of the Poisson equation, using an asymmetric volumetric stencil, together with the transition layer technique to formulate finite differences that properly deal with the considered Newman and Dirichlet boundary conditions. Later, we formulate a solution for an irregular free-form boundary domain, based on a second-order accuracy ghost-filling approximation for the homogeneous Newman flux condition, allowing us to solve the discretized finite differences volume only for the significant potential unknowns. Then we analyze the linear equation system solution and the considerations for a reciprocity solution over the electrodes space. Further, we test our method using a multilayer spherical head model that can include anisotropy and can admit an analytical solution of the Poisson equation. Finally, we analyze a noisy linear equation system to study the numerical stability of the technique in the presence of perturbations. Our results show stability and super-linear convergence. Moreover, validation against an analytical solution shows high correspondence in the potential distribution for a wide range of dipole positions and orientations. As a final stage, we introduce a realistic patient-specific EEG forward modeling pipeline, including anisotropy in the skull and the white matter; MRI segmentation; electrode co-register; voxelwise conductivity definitions; reciprocity space solution; and GFDARM numeric EEG forward solver. Our results using Bayesian model selection for group studies in a random fixed effect analysis show strong evidence in favor of more complex head models, including anisotropic skull and white matter modeling, Resumen: Los efectos conjuntos conectando técnicas espaciales y funcionales de neuro-imagen permiten el mejoramiento de las características de un solo método. Específicamente, la generación de imágenes de fuentes de activación (ESI) mediante electroencefalografía (EEG) que relaciona modelos estructurales de conductividad y técnicas de localización de fuentes distribuidas, permite un mejoramiento en la resolución espacial, conservando la resolución temporal del EEG. La construcción de modelos de conductividad más precisos, con una mayor precisión y menos carga computacional es una tarea importante para soluciones que emplean ESI, así como para fines de investigación, planificación de cirugía y/o los tratamientos de trastornos neurológicos en general. En este trabajo presentamos una nueva solución del problema directo empleando diferencias finitas, a la que llamamos método de diferencias finitas empleando llenado-fantasma, reciprocidad y anisotropía (GFDARM). Primero, nosotros presentamos una solución numérica de diferencias finitas para la forma conservativa de la ecuación de Poisson, utilizando una plantilla volumétrica asimétrica, junto con la técnica de transición de capas, para formular diferencias finitas que aborden adecuadamente las condiciones de contorno de Newman y Dirichlet. Más adelante, formulamos la solución para una frontera irregular y de forma libre basada en una aproximación de segundo orden de llenado-fantasma que permite cumplir la condición de flujo homogéneo de Newman, lo que nos permite resolver el volumen discretizado solo para las incógnitas de potencial diferentes de cero (significativas). Posteriormente se analiza la solución del sistema de ecuaciones lineales y las consideraciones para una solución de reciprocidad sobre el espacio de los electrodos. Además, realizamos pruebas utilizando un modelo de cabeza esférico multicapa que puede incluir anisotropía y del cual se puede obtener una solución analítica. Finalmente, se analiza la solución del sistema lineal de ecuaciones en presencia de ruido estudiando la estabilidad numérica de la técnica. Nuestros resultados muestran estabilidad y convergencia súper lineal y una alta correspondencia en la distribución de potenciales para una amplia gama de posiciones y orientaciones de dipolos comparando contra una solución analítica esférica. Finalmente se una metodología para el modelado directo de EEG empleando modelos realistas y paciente-específicos, que incluye anisotropía en el cráneo y la materia blanca; segmentación de MRI; co-registro de electrodos; definiciones de conductividad voxel a voxel; solución de espacio de reciprocidad; y solución numérica del problema directo en EEG empleando GFDARM. El desempeño de la técnica y la influencia de los modelos directos realísticos son analizados empleando selección de modelos para estudios de grupos en un marco Bayesiano, los cuales muestran fuerte evidencia a favor de modelos de conductividad más complejos, que incluyan modelado anisótropo del cráneo y la materia blanca

Tipo de documento:Tesis/trabajos de grado - Thesis (Doctorado)
Colaborador / Asesor:Castellanos Dominguez, César Germán
Información adicional:Tesis presentada como requisito parcial para optar al título de: Doctor en Ingeniería - Ingeniería Automática.
Palabras clave:EEG forward problem, Finite diferences, Ghost-filling, head modelling Head modeling, Anisotropy, Tissue conductivities, EEG source imaging (ESI), Bayesian model selection for group studies, Volumetric priors, Problema directo en EEG, Diferencias finitas, Llenado fantasma, Modelado de la cabeza, Anisotropía, Conductividad de tejidos, Imagenología de fuentes EEG, Selección de modelos Bayesiana para estudios de grupos, Priors de volumen
Temática:6 Tecnología (ciencias aplicadas) / Technology > 62 Ingeniería y operaciones afines / Engineering
Unidad administrativa:Sede Manizales > Facultad de Ingeniería y Arquitectura > Departamento de Ingeniería Eléctrica, Electrónica y Computación
Código ID:65168
Enviado por : PhD Ernesto Cuartas Morales
Enviado el día :05 Septiembre 2018 15:39
Ultima modificación:05 Septiembre 2018 15:39
Ultima modificación:05 Septiembre 2018 15:39
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox