Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Artificial Neuronal Networks: A Bayesian Approach Using Parallel Computing

Guzmán, Eduardo and Vázquez, Mario and Del Valle, David and Pérez-Rodríguez, Paulino (2018) Artificial Neuronal Networks: A Bayesian Approach Using Parallel Computing. Revista Colombiana de Estadística, 41 (2). pp. 173-189. ISSN 2389-8976

Texto completo

[img]
Vista previa
PDF - Versión Publicada
Available under License Creative Commons Attribution.

1MB

URL oficial: https://revistas.unal.edu.co/index.php/estad/artic...

Resumen

An Artificial Neural Network (ANN) is a learning paradigm and automatic processing inspired in the biological behavior of neurons and the brain structure. The brain is a complex system; its basic processing unit are the neurons, which are distributed massively in the brain sharing multiple connections between them. The ANNs try to emulate some characteristics of humans, and can be thought as intelligent systems that perform some tasks in a different way that actual computer does. The ANNs can be used to perform complex activities, for example: pattern recognition and classification, weather prediction, genetic values prediction, etc. The algorithms used to train the ANN, are in general complex, so therefore there is a need to have alternatives which lead to a significant reduction of times employed to train an ANN. In this work, we present an algorithm based in the strategy ``divide and conquer'' which allows to train an ANN with a single hidden layer. Part of the sub problems of the general algorithm used for training are solved by using parallel computing techniques, which allows to improve the performance of the resulting application. The proposed algorithm was implemented using the C++ programming language, and the libraries Open MPI and ScaLAPACK. We present some application examples and we asses the application performance. The results shown that it is possible to reduce significantly the time necessary to execute the program that implements the algorithm to train the ANN., Una Red Neuronal Articial (RNA) es un paradigma de aprendizaje yprocesamiento automático inspirado en el comportamiento biológico de las neuronas y en la estructura del cerebro. El cerebro es un sistema altamente complejo; su unidad básica de procesamiento son las neuronas, las cuales se encuentra distribuidas de forma masiva compartiendo múltiples conexionesentre ellas. Las RNAs intentan emular ciertas características propias de los humanos, pueden ser vistas como un sistema inteligente que lleva a cabo tareas de manera distinta a como lo hacen las computadoras actuales. Las RNAs pueden emplearse para realizar actividades complejas, por ejemplo: reconocimiento y clasicación de patrones, predicción del clima, predicción de valores genéticos, etc. Los algoritmos utilizados para entrenar las redes, son en general complejos, por lo cual surge la necesidad de contar con alternativas que permitan reducir de manera signicativa el tiempo necesario para entrenar una red. En este trabajo se presenta una propuesta de algoritmos basados en la estrategia divide y conquista que permiten entrenar las RNAs de una sola capa oculta. Parte de los sub problemas del algoritmo general de entrenamiento se resuelven utilizando técnicas de cómputo paralelo, lo que permite mejorar el desempeño de la aplicación resultante. El algoritmo propuesto fue implementado utilizando el lenguaje de programación C++, así como las librerías Open MPI y ScaLAPACK. Se presentan algunos ejemplos de aplicación y se evalúa el desempeño del programa resultante. Los resultados obtenidos muestran que es posible reducir de manera signicativa los tiempos necesarios para ejecutar el programa que implementa el algoritmo para el ajuste de la RNA.

Tipo de documento:Artículo - Article
Palabras clave:Empirical Bayes, Nonlinear models, Parallel processing, Bayes emp\'irico, modelos no lineales, procesamiento en paralelo
Temática:5 Ciencias naturales y matemáticas / Science > 51 Matemáticas / Mathematics
3 Ciencias sociales / Social sciences > 31 Colecciones de estadística general / Statistics
Unidad administrativa:Revistas electrónicas UN > Revista Colombiana de Estadística
Código ID:67511
Enviado por : Dirección Nacional de Bibliotecas STECNICO
Enviado el día :20 Septiembre 2018 19:58
Ultima modificación:20 Septiembre 2018 19:58
Ultima modificación:20 Septiembre 2018 19:58
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox