Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Construction of the Design Matrix for Generalized Linear Mixed-Effects Models in the Context of Clinical Trials of Treatment Sequences

Diaz, Francisco J. (2018) Construction of the Design Matrix for Generalized Linear Mixed-Effects Models in the Context of Clinical Trials of Treatment Sequences. Revista Colombiana de Estadística, 41 (2). pp. 191-233. ISSN 2389-8976

Texto completo

[img]
Vista previa
PDF - Versión Publicada
Available under License Creative Commons Attribution.

909kB

URL oficial: https://revistas.unal.edu.co/index.php/estad/artic...

Resumen

The problem of constructing a design matrix of full rank for generalized linear mixed-effects models (GLMMs) has not been addressed in statistical literature in the context of clinical trials of treatment sequences. Solving this problem is important because the most popular estimation methods for GLMMs assume a design matrix of full rank, and GLMMs are useful tools in statistical practice. We propose new developments in GLMMs that address this problem. We present a new model for the design and analysis of clinical trials of treatment sequences, which utilizes some special sequences called skip sequences. We present a theorem showing that estimators computed through quasi-likelihood, maximum likelihood or generalized least squares, or through robust approaches, exist only if appropriate skip sequences are used. We prove theorems that establish methods for implementing skip sequences in practice. In particular, one of these theorems computes the necessary skip sequences explicitly. Our new approach allows building design matrices of full rank and facilitates the implementation of regression models in the experimental design and data analysis of clinical trials of treatment sequences. We also explain why the standard approach to constructing dummy variables is inappropriate in studies of treatment sequences. The methods are illustrated with a data analysis of the STAR*D study of sequences of treatments for depression., La estimación de los efectos de arrastre es un problema difícil en el diseño y análisis de ensayos clínicos de secuencias de tratamientos, incluyendo ensayos cruzados. Excepto por diseños simples, estos efectos son usualmente no identificables y, por lo tanto, no estimables. La imposición de restricciones a los parámetros es a menudo no justificada y produce diferentes estimativos de los efectos de arrastre dependiendo de la restricción impuesta. Las inversas generalizadas o el balance de tratamientos a menudo permiten estimar losefectos principales de tratamiento, pero no resuelven el problema de estimar la contribución de los efectos de arrastre de una secuencia de tratamiento. Además, los períodos de lavado no siempre son factibles o éticos. Los diseños con parámetros no identificables comúnmente tienen matrices de diseño que no son de rango completo. Por lo tanto, proponemos métodos para la construcción de matrices de rango completo, sin imponer restricciones artificiales en los efectos de arrastre. Nuestros métodos son aplicables en un contextode modelos lineales mixtos generalizados. Presentamos un nuevo modelo para el diseño y análisis de ensayos clínicos de secuencias de tratamientos, llamado Sistema Anticrónico, e introducimos secuencias de tratamiento especiales llamadas Secuencias de Salto. Demostramos que los efectos de arrastre son identificables sólo si se usan Secuencias de Salto apropiadas. Explicamos cómo implementar en la práctica estas secuencias, y presentamos un método para calcular las secuencias apropiadas. Presentamos aplicaciones al diseño de un estudio cruzado con 3 tratamientos y 3 períodos, y al análisis del estudio STAR*D de secuencias de tratamientos para la depresión.

Tipo de documento:Artículo - Article
Palabras clave:Augmented regression, robust fixed-effects estimators, generalized least squares, maximum likelihood, quasi-likelihood, random effects linear models, Cuasi-verosimilitud, diseño cruzado, efectos de arrastre, estimabilidad, estimadores robustos de efectos fijos, identificabilidad, inversas generalizadas, matriz de diseño, máxima verosimilitud, mínimos cuadrados generalizados, modelos lineales de efectos
Temática:5 Ciencias naturales y matemáticas / Science > 51 Matemáticas / Mathematics
3 Ciencias sociales / Social sciences > 31 Colecciones de estadística general / Statistics
Unidad administrativa:Revistas electrónicas UN > Revista Colombiana de Estadística
Código ID:67513
Enviado por : Dirección Nacional de Bibliotecas STECNICO
Enviado el día :20 Septiembre 2018 19:58
Ultima modificación:20 Septiembre 2018 19:58
Ultima modificación:20 Septiembre 2018 19:58
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox