Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Segmentation of color images by chromaticity features using self-organizing maps

García-Lamont, Farid and Cuevas Rasgado, Alma Delia and Niño Membrillo, Yedid Erandini (2016) Segmentation of color images by chromaticity features using self-organizing maps. Ingeniería e Investigación, 36 (2). pp. 78-89. ISSN 2248-8723

Texto completo

[img]
Vista previa
PDF - Versión Publicada
Available under License Creative Commons Attribution.

1MB

URL oficial: https://revistas.unal.edu.co/index.php/ingeinv/art...

Resumen

Usually, the segmentation of color images is performed using cluster-based methods and the RGB space to represent the colors. The drawback with these methods is the a priori knowledge of the number of groups, or colors, in the image; besides, the RGB space issensitive to the intensity of the colors. Humans can identify different sections within a scene by the chromaticity of its colors of, as this is the feature humans employ to tell them apart. In this paper, we propose to emulate the human perception of color by training a self-organizing map (SOM) with samples of chromaticity of different colors. The image to process is mapped to the HSV space because in this space the chromaticity is decoupled from the intensity, while in the RGB space this is not possible. Our proposal does not require knowing a priori the number of colors within a scene, and non-uniform illumination does not significantly affect the image segmentation. We present experimental results using some images from the Berkeley segmentation database by employing SOMs with different sizes, which are segmented successfully using only chromaticity features., Usualmente, la segmentación de imágenes de color se realiza empleando métodos de agrupamiento y el espacio RGB para representar los colores. El problema con los métodos de agrupamiento es que se requiere conocer previamente la cantidad de grupos, o colores, en la imagen; además de que el espacio RGB es sensible a la intensidad de colores. Los humanos podemos identificar diferentes secciones de una escena solo por la cromaticidad de los colores, ya que representa la característica que nos permite diferenciarlos entre sí. En este artículo se propone emular la percepción humana del color al entrenar un mapa auto-organizado (MAO) con muestras de cromaticidad de diferentes colores. La imagen a procesar es transformada al espacio HSV porque en tal espacio la cromaticidad es separada de la intensidad, mientras que en el espacio RGB no es posible. Nuestra propuesta no requiere conocer previamente la cantidad de colores que hay en una escena, y la iluminación no uniforme no afecta significativamente la segmentación de la imagen. Presentamos resultados experimentales utilizando algunas imágenes de la base de segmentación de Berkeley empleando MAOs de diferentes tamaños, las cuales son segmentadas exitosamente empleando únicamente características de cromaticidad.

Tipo de documento:Artículo - Article
Palabras clave:Segmentation of color images, color spaces, competitive neural networks, Segmentación de imágenes de color, espacios de color, redes neuronales competitivas
Temática:6 Tecnología (ciencias aplicadas) / Technology > 62 Ingeniería y operaciones afines / Engineering
Unidad administrativa:Revistas electrónicas UN > Ingeniería e Investigación
Código ID:68647
Enviado por : Dirección Nacional de Bibliotecas STECNICO
Enviado el día :21 Septiembre 2018 14:02
Ultima modificación:21 Septiembre 2018 14:02
Ultima modificación:21 Septiembre 2018 14:02
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox