Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Characterization of postures to analyze people’s emotions using Kinect technology

Monsalve-Pulido, Julián Alberto and Parra-Rodríguez, Carlos Alberto (2018) Characterization of postures to analyze people’s emotions using Kinect technology. DYNA, 85 (205). pp. 256-263. ISSN 2346-2183

Texto completo

[img]
Vista previa
PDF - Versión Publicada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

859kB

URL oficial: https://revistas.unal.edu.co/index.php/dyna/articl...

Resumen

This article synthesizes the research undertaken into the use of classification techniques that characterize people's positions, the objective being to identify emotions (astonishment, anger, happiness and sadness). We used a three-phase exploratory research methodology, which resulted in technological appropriation and a model that classified people’s emotions (in standing position) using the Kinect Skeletal Tracking algorithm, which is a free software. We proposed a feature vector for pattern recognition using classification techniques such as SVM, KNN, and Bayesian Networks for 17,882 pieces of data that were obtained in a 14-person training sample. As a result, we found that that the KNN algorithm has a maximum effectiveness of 89.0466%, which surpasses the other selected algorithms., El presente artículo sintetiza la investigación realizada en el uso de técnicas de clasificación para un proceso de caracterización de posturas de personas que tiene como objetivo la identificación de emociones (Asombro, Enfado, Felicidad y Tristeza). En este proyecto de investigación fue necesario utilizar una metodología de investigación exploratoria en tres fases donde el resultado es una apropiación tecnológica y un modelo de clasificación de emociones en personas en posición de pie, usando el algoritmo de Skeletal Tracking de Kinect basado en software libre. Se propuso un vector de características para el reconocimiento de patrones usando técnicas de clasificación como SVM, KNN y Redes Bayesianas en 17.882 datos obtenidos en una muestra de entrenamiento de 14 personas. Como resultado se evidenció que el algoritmo KNN tiene una efectividad máxima del 89.0466% superando a los demás algoritmos seleccionados.

Tipo de documento:Artículo - Article
Palabras clave:análisis de emociones, reconocimiento de posturas, software libre, Kinect, KNN, analysis of emotions, recognition of postures, free software, Kinect, KNN
Temática:6 Tecnología (ciencias aplicadas) / Technology > 62 Ingeniería y operaciones afines / Engineering
Unidad administrativa:Revistas electrónicas UN > Dyna
Código ID:69557
Enviado por : Dirección Nacional de Bibliotecas STECNICO
Enviado el día :24 Septiembre 2018 17:34
Ultima modificación:24 Septiembre 2018 17:34
Ultima modificación:24 Septiembre 2018 17:34
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox