Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

High-Frequency trading strategy based on deep neural networks

Arévalo Murillo, Andrés Ricardo (2019) High-Frequency trading strategy based on deep neural networks. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.

Texto completo

[img] PDF - Versión Aceptada
Available under License Creative Commons Attribution Non-commercial No Derivatives.



Recent conceptual and engineering breakthroughs in Machine Learning (ML), particularly in Deep Neural Networks (DNN), have revolutionized the Computer Science field and have been responsible for astonishing breakthroughs in computer vision, speech recognition, facial recognition, transaction fraud detection, automatic translation, video object tracking, natural language processing, and robotics, virtually disrupting every aspect of our lives. The financial industry has not been oblivious to this revolution; since the introduction of the first ML techniques, there have been efforts to use them as financial modeling and decision tools rendering in some cases limited and other in cases useful results, but overall, not astonishing results as in other areas. Some of the most challenging problems for ML come form finance, for instance, price prediction whose solution will require not only the most advanced ML techniques but also other non-standard and uncommon methods and techniques, giving the origin of a new field called Financial ML, whose name has been coined by Lopez de Prado last year. Today, many hedge funds and investment banks have ML divisions, using all kinds of data sources and techniques, to develop financial modeling and decision tools. Consequently, ML is a part of the present and probably will be the future of the financial industry. In this thesis, we use the Deep Neural Networks (DNN) and Recurrent Neural Networks (RNN), two of the most advanced ML techniques, whose learning capabilities are enhanced using the representational power of the Discrete Wavelet Transform (DWT), to model and predict short-term stock prices showing that these techniques allow us to develop exploitable high-frequency trading strategies. Since high-frequency financial (HF) data are expensive, difficult to access, and immense (Big Data), there is no standard dataset in Finance or Computational Finance. Therefore, the chosen testing dataset consists of the tick-by-tick data of 18 well-known companies from the Dow Jones Industrial Average Index (DJIA). This dataset has 348.98 millions of transactions (17 GB) from January 2015 to July 2017. After a long iterative process of data exploration and feature engineering, several features were tested and combined. The tick-by-tick data are preprocessed and transformed using the DWT with a Haar Filter. The final features consist of the sliding windows of two variables: one-minute pseudo-log-returns (the logarithmic difference between one-minute average prices) and the features generated by the DWT. These transformations, which are non-standard data transformations in finance, will better represent the high-frequency behavior of Financial Time Series (FTS). Moreover, the DNN predicts the next one-minute pseudo-log-return that can be transformed into the next predicted one-minute average price. These prices will be used to build a high-frequency trading strategy that buys (sells) when the next one-minute average price prediction is above (below) the last one-minute closing price. Results show that (i) the proposed DNN achieves a highly competitive prediction performance in the price prediction domain given by a Directional Accuracy (DA) ranging from 64% to 72%. (ii) The proposed strategy yields positive profits, a max draw-down less or equal to 3%, and an annualized volatility ranging from 3% to 9% for all stocks. The main contribution is the innovative approach for predicting FTS. It includes the combination of the advanced learning capabilities of the Deep Recurrent Neural Networks (DRNNs), the representational power in frequency and time domains of the DWT, and the idea of modeling time series through average prices.

Tipo de documento:Tesis/trabajos de grado - Thesis (Doctorado)
Colaborador / Asesor:Hernandez, German
Información adicional:Doctor en Ingeniería de Sistemas y Computación. Líneas de investigación: Computación Aplicada, Sistemas Inteligentes y Computación Natural.
Palabras clave:Short-term price Forecasting, High-frequency financial data, High-frequency Trading, Algorithmic Trading, Deep Neural Networks, Discrete Wavelet Transform, Computational Finance, Transformación discreta de wavelets, Previsión de precios a corto plazo, Datos financieros de alta frecuencia, Trading de alta frecuencia, Trading algorítmico, Redes neuronales profundas, Finanzas computacionales
Temática:0 Generalidades / Computer science, information & general works
6 Tecnología (ciencias aplicadas) / Technology > 62 Ingeniería y operaciones afines / Engineering
Unidad administrativa:Sede Bogotá > Facultad de Ingeniería > Departamento de Ingeniería de Sistemas e Industrial > Ingeniería de Sistemas
Código ID:73054
Enviado por : Andrés Ricardo Arévalo Murillo
Enviado el día :06 Agosto 2019 14:44
Ultima modificación:06 Agosto 2019 14:44
Ultima modificación:06 Agosto 2019 14:44
Exportar:Clic aquí
Estadísticas:Clic aquí

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox