Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Teorema del indice para variedades de contacto

Patiño Naranjo, Yesid Fernando (2018) Teorema del indice para variedades de contacto. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.

Texto completo

[img] PDF - Versión Aceptada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

552kB

Resumen

Una variedad de contacto M es una variedad de dimensión impar 2n+1 equipada con una 1-forma w que no se anula sobre M, y tal quew w^(dw)^n es una forma de volumen. La 1-forma w es llamada una forma de contacto sobre M. Sea H := Ker(w) la distribución diferencial inducida por w . La estructura de contacto w dota al haz vectorial T_HM := H +(TM/H) de una estructura de fibrado de grupos de Heisenberg con la cual T_HM adquiere también una estructura natural de grupoide. De manera análoga a la prueba de Connes [A. Connes, 1984] del teorema de Atiyah-Singer, en [Erp, 2006] se construye el grupoide parabólico tangente T_HM, una variedad cuyo interior es el grupoide M xM x(0,1) y cuya frontera es la unión disyunta de grupoides T_HMU(MxMx1). Como en la prueba del índice de Atiyah-Singer, el grupoide parabólico tangente T_HM es una deformación de grupoides de T_HM en MxM que define un índice topológico ind_t : K0(C*(T_HM)) -> Z. Un operador diferencial tipo Rockland P en la variedad de contacto M induce un elemento [σ_H(P)] en K0(C*(T_HM)), el teorema cuya prueba estudiamos en la tesis (ver Teorema 17) afirma que ind_t([σ_H(P)]) = dim(Ker(P)) - dim(Ker(P*)); (0-1) es decir el índice topológico es igual al índice analítico. En el texto tratamos de dar los fundamentos básicos para entender la igualdad (0-1) y su demostración., Abstract: A contact manifold M is a 2m + 1 dimensional manifold equipped with a 1-form w such that w does not vanish on M, and w ^ (dw)^n is a volume form. The 1-form w is called a contact form on M. Let H := Ker(w) be the differential distribution induced by w. The contact structure endows to vector bundle T_HM := H x (TM/H) of a structure of principal bundle whose fibers are Heisenberg groups with which THM acquires also a natural groupoid structure. In a similar way to Connes [A. Connes, 1984] proof of Atiyah- Singer theorem, in [Erp, 2006] is builded the parabolic tangent groupoid THM, this is a manifold whose interior is the groupoid M xM x(0, 1) and the boundary is the disjoint union of the groupoids THMU [M xM x1]. As in the Atiyah- Singer index proof, the parabolic tangent groupoid THM is a deformation of groupoids of THM in M x M, this define a topological index indt : K0(C*(T_HM)) ->Z. A Rockland type differential operator P in a contact manifold M induces an element [σH(P)] 2 K0(C*(THM)). The theorem that we study in this master thesis (see theorem 17) states that indt([σH(P)]) = dim(Ker(P)) - dim(Ker(P*)); (0-2) that is to say the topological index is the same that the analitical index. We try to provide the basic background to understand the statement and the proof of (0-2).

Tipo de documento:Tesis/trabajos de grado - Thesis (Maestría)
Colaborador / Asesor:Cano García, Leonardo Arturo
Información adicional:Magíster en Ciencias - Matemáticas.
Palabras clave:Teorema del indice, C*-álgebras, K-teoría, Variedades de contacto, Index theorem, C*-algebras, K-theory, Contact manifolds
Temática:5 Ciencias naturales y matemáticas / Science > 51 Matemáticas / Mathematics
Unidad administrativa:Sede Bogotá > Facultad de Ciencias > Departamento de Matemáticas
Código ID:73271
Enviado por : Unnamed user with email yfpatinon@unal.edu.co
Enviado el día :30 Agosto 2019 16:31
Ultima modificación:30 Agosto 2019 16:47
Ultima modificación:30 Agosto 2019 16:47
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox