Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Time-series representation framework based on multi-instance similarity measures

Caicedo Acosta, Julian Camilo (2019) Time-series representation framework based on multi-instance similarity measures. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales.

Texto completo

[img] PDF
Available under License Creative Commons Attribution Non-commercial No Derivatives.

1MB

Resumen

Time series analysis plays an essential role in today’s society due to the ease of access to information. This analysis is present in the majority of applications that involve sensors, but in recent years thanks to technological advancement, this approach has been directed towards the treatment of complex signals that lack periodicity and even that present non-stationary dynamics such as signals of brain activity or magnetic and satellite resonance images. The main challenges at the time of time series analysis are focused on the representation of the same, for which methodologies based on similarity measures have been proposed. However, these approaches are oriented to the measurement of local patterns point-to-point in the signals using metrics based on the form. Besides, the selection of relevant information from the representations is of high importance, in order to eliminate noise and train classifiers with discriminant information for the analysis tasks, however, this selection is usually made at the level of characteristics, leaving aside the Global signal information. In the same way, lately, there have been applications in which it is necessary to analyze time series from different sources of information or multimodal, for which there are methods that generate acceptable performance but lack interpretability. In this regard, we propose a framework based on representations of similarity and multiple-instance learning that allows selecting relevant information for classification tasks in order to improve the performance and interpretability of the models, Resumen: El análisis de series de tiempo juega un papel importante en la sociedad actual debido a la facilidad de acceso a la información. Este análisis está presente en la mayoría de aplicaciones que involucran sensores, pero en los ´últimos años gracias al avance tecnológico, este enfoque se ha encaminado hacia el tratamiento de señales complejas que carecen de periodicidad e incluso que presentan dinámicas no estacionarias como lo son las señales de actividad cerebral o las imágenes de resonancias magnéticas y satelitales. Los principales retos a la hora de realizar en análisis de series de tiempo se centran en la representación de las mismas, para lo cual se han propuesto metodologías basadas en medidas de similitud, sin embargo, estos enfoques están orientados a la medición de patrones locales punto a punto en las señales utilizando métricas basadas en la forma. Además, es de alta importancia la selección de información relevante de las representaciones, con el fin de eliminar el ruido y entrenar clasificadores con información discriminante para las tareas de análisis, sin embargo, esta selección se suele hacer a nivel de características, dejando de lado la información de global de la señal. De la misma manera, ´últimamente han surgido aplicaciones en las cuales es necesario el análisis de series de tiempo provenientes de diferentes fuentes de información o multimodales, para lo cual existen métodos que generan un rendimiento aceptable, pero carecen de interpretabilidad. En este sentido, en nosotros proponemos un marco de trabajo basado en representaciones de similitud y aprendizaje de múltiples instancias que permita seleccionar información relevante para tareas de clasificación con el fin de mejorar el rendimiento y la interpretabilidad de los modelos

Tipo de documento:Tesis/trabajos de grado - Thesis (Maestría)
Colaborador / Asesor:Castellanos Domínguez, César Germán and Cárdenas Peña, David Augusto
Palabras clave:Time-Series analysis, Similarity, Multiple instance learning, EEG, MRI, Satellite images, Análisis de series de tiempo, Aprendizaje de múltiples instancias, EEG, MRI, Imágenes satelita
Temática:6 Tecnología (ciencias aplicadas) / Technology > 62 Ingeniería y operaciones afines / Engineering
Unidad administrativa:Sede Manizales > Facultad de Ingeniería y Arquitectura > Departamento de Ingeniería Eléctrica, Electrónica y Computación
Código ID:73819
Enviado por : Julian Camilo Caicedo Acosta
Enviado el día :11 Septiembre 2019 19:20
Ultima modificación:11 Septiembre 2019 19:20
Ultima modificación:11 Septiembre 2019 19:20
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox