Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Assessment of the impact of biomass burning on air quality in the Colombian Orinoco River Basin

Hernández Villamizar, Andrea Juliana (2019) Assessment of the impact of biomass burning on air quality in the Colombian Orinoco River Basin. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.

Texto completo

[img] PDF - Versión Aceptada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

11MB

Resumen

The “Llanos” is a half a million square kilometers savanna ecosystem that occupies most of the Orinoco River Basin (ORIB) in Northern South America, from the Colombian Andes foothills almost to the Orinoco River delta at the Atlantic Ocean in Venezuela. This binational savanna ecosystem undergoes periodic and extensive biomass burning (BB). During the dry season (BB period) northeast trade winds are intensified over the Llanos region, which implies that BB emissions may be transported to Colombian Orinoco river basin cities located southwest of the Llanos near the Andes foothills. Colombian Llanos have a population of 1.7 million inhabitants, 73% of them in the urban areas, who can potentially be exposed to BB pollutants. Biomass burning (BB) is a significant source of trace gases and aerosols that affects human health, atmospheric chemistry and climate. Health effects are mainly caused by particulate matter (PM) and photochemically-produced ozone. Most of BB emitted particles are within the accumulation mode (particle diameter < 1μm), which implies low deposition velocities, long residence times in the atmosphere and potential for long-range transport. BB-derived organic particles contain mutagenic and carcinogenic components that lead to genotoxic effects on human alveolar cells, even when ambient air PM10 concentrations are below the World Health Organization (WHO) standard. Previous research conducted in Venezuela in the 1980-1990’s showed significant air quality impacts of BB in the Venezuelan Llanos. Until recently, there were no studies on the influence of biomass burning in the Colombian Llanos. Furthermore, at the beginning of this research no Colombian ORIB city had air quality monitoring systems, so there was scarce information on particulate matter levels in the region. Only recently, one of the main Colombian Llanos cities has established an air quality network. The source attribution problem, specifically the one of disentangling the BB emissions contribution to air quality degradation is usually tackled using simulation and/or analytic tools (e.g. chemical composition for receptor modeling), both of which have its own challenges. One of the fundamental problems when simulating BB impacts is building emission inventories, because BB is a complex, non-steady state problem, of high spatiotemporal variability. Emission estimation is even more difficult in the Llanos savannas where available information shows the predominance of small fires with more than 75% of patches smaller than 115 ha, which is smaller than the minimum detectable burned size of available global burned area products. The other aspect is to determine if emissions and meteorological conditions result in regional or even synoptic scale transport of BB emissions. Also, measurement and sampling of PM is required for both approaches (simulation and analytical tools). This thesis investigated the impact of biomass burning emissions on air quality of Colombian Orinoco river basin. The study included the following steps: (1) the development of a BB emission inventory using a methodology for integrating different satellite products to detect small fires that are predominant in the region; (2) monitoring of aerosol column using sun photometry (exploratory AERONET site); (3) measurement campaigns focused on particulate matter measurements and sampling during periods of high and low biomass burning activity; (4) meteorological simulations with a state of science model (WRF), and (5) Lagrangian atmospheric simulations to understand the transport of biomass burning emissions and their contribution to the particulate matter levels at relevant locations. The measurements showed that air quality in the Colombian Llanos significantly deteriorates during biomass burning periods. Fine mode aerosol content in the total atmospheric column increased the Aerosol Optical Depth (AOD) from ~0.15 during periods with low fire activity up to ~1 during biomass burning periods. BB affected in a similar way rural and suburban locations close to the Andes foothills, causing PM10 to increase by 21 µg/m³ and 26 µg/m³ at Taluma (rural) and Libertad (suburban) sites, respectively, during a period of high fire activity in Colombia and Venezuelan Llanos. Urban locations closer to the Venezuelan border were more severely impacted. Concentrations at Yopal and Arauca increased by ~ 70 µg/m³ during a period with high fire activity in the Venezuelan Llanos. The levels of PM10 and BC reached during the biomass burning period in the Llanos region are similar, or even higher than the levels observed in some urban monitoring stations of Bogota, where dense industrial and mobile sources exist. PM10 enhancements were closely related enhancements of biomass burning (BC, K+) and dust tracers. Exploratory source apportionment techniques demonstrated that around 80% of the observed PM10 enhancements are due to biomass burning emissions, and 20% are caused by soil dust. One of the main contributions of this thesis was the development of an indicator of the contribution at the receptor of particles from fire emissions (CFER). This tool uses Fire Radiative Power (FRP) from MODIS active fire detection as a proxy of fire emissions and the footprint generated from backward stochastic Lagrangian modeling to estimate the influence of fire emissions on the daily average aerosol concentration at receptors. This indicator performed reasonably well for PM10 observations at Yopal, Arauca and Taluma and has the potential to become an operational tool combining near real-time MODIS fire detections and Lagrangian simulations. Estimated PM10 enhancements calculated with STILT significantly underestimated observed enhancements. The analysis revealed that the underestimation is rather insensitive to: (1) driving meteorology (GDAS or WRF wind fields); (2) time allocation of emissions, and (3) emissions from other sources. Results suggest that the underestimation is likely related to secondary aerosol formation, not included within the modeling framework. This thesis contributes to the understanding of the impact of biomass burning on air quality of Colombian Orinoco River basin, addressing a regional pollution problem not previously identified in Colombia. Results provide solid scientific evidence of the impact of Llanos biomass burning on the air quality of Colombian Llanos cities, provides for the first time hard evidence of transboundary transport of BB pollution from Venezuela, and also provides an indicator that could be used by the environmental authorities to forecast pollution episodes and take actions to reduce population exposure., Resumen: Los llanos son un ecosistema de sabana de cerca de medio millón de kilómetros cuadrados que ocupa gran parte de la cuenca del río Orinoco, en el norte de Suramérica, y se extiende desde el piedemonte de los Andes colombianos hasta el delta del Orinoco en el Océano Atlántico en Venezuela. Este ecosistema binacional experimenta quema de biomasa extensiva y periódica. Durante la temporada seca (periodo de quemas de biomasa) los vientos alisios del noreste se intensifican sobre la región de los Llanos, lo cual implica que las emisiones generadas por quema de biomasa pueden ser transportadas a las ciudades de la Orinoquia localizadas al sureste de los Llanos, cerca al piedemonte de los Andes. La quema de biomasa es una fuente significativa de aerosoles y gases traza que afecta la salud humana, la química atmosférica y el clima. Los efectos en la salud son principalmente causados por el material particulado y el ozono (producido mediante reacciones fotoquímicas). La mayoría de las partículas emitidas por la quema de biomasa se encuentran en el rango de acumulación (diámetro de partícula < 1 µm), lo cual implica bajas velocidades de sedimentación, largos tiempos de residencia en la atmósfera y potencial para ser transportadas a grandes distancias. Las partículas orgánicas emitidas por las quemas contienen componentes mutagénicos y carcinogénicos que generan efectos genotóxicos en células alveolares humanas, aun cuando las concentraciones de PM10 en aire ambiente son inferiores a los estándares de la Organización Mundial de la Salud. Investigaciones previas realizadas en Venezuela en los 1980-1990’s mostraron impactos significativos de las quemas de biomasa en los Llanos venezolanos. Hasta hace muy poco, no existían estudios sobre la influencia de la quema de biomasa en los Llanos colombianos. Adicionalmente, al inicio de esta investigación, ninguna ciudad de la Orinoquia contaba con sistemas de monitoreo de calidad del aire, entonces la información sobre niveles de material particulado en la región es muy escasa. Solo recientemente, una de las principales ciudades de los Llanos colombianos estableció una red de monitoreo de calidad del aire. El problema de atribución de fuentes, particularmente el de establecer la contribución de las emisiones generadas por quema de biomasa a la degradación de la calidad del aire, es usualmente abordado empleando simulación y/o herramientas analíticas (p.e. composición química para modelos de receptores), cada una con sus propios desafíos. Uno de los problemas fundamentales cuando se simulan los impactos de la quema de biomasa, es construir inventarios de emisión, ya que la quema de biomasa es un problema complejo, no estacionario y de alta variabilidad espacial y temporal. La estimación de emisiones es aún más difícil en las sabanas de los Llanos, donde la información disponible muestra la predominancia de fuegos pequeños, con más del 75% de los fuegos menores a 115 ha, lo cual es menor al tamaño mínimo detectable de productos de área quemada globales. El otro aspecto por resolver es determinar si las emisiones y condiciones meteorológicas resultan en transporte regional o sinóptico de las emisiones de quema de biomasa. Adicionalmente, los dos enfoques (simulación -para propósitos de validación- y herramientas analíticas) requieren medición y muestreo de material particulado. Esta tesis investigó el impacto de las emisiones generadas por quema de biomasa en la calidad del aire de la Orinoquia colombiana. Este estudio incluyó los siguientes pasos: (1) el desarrollo de un inventario de emisiones usando una metodología para integrar diferentes productos satelitales para detectar los fuegos pequeños que predominan en la región; (2) monitoreo de aerosoles en la columna atmosférica usando fotometría solar (Sitio exploratorio de AERONET); (3) campañas enfocadas en la medición y muestreo de material particulado durante periodos de alta y baja actividad de quema de biomasa; (4) simulaciones meteorológicas usando el modelo WRF, y (5) simulaciones atmosféricas Lagrangianas para entender el transporte de las emisiones por quema de biomasa y su contribución a los niveles de material particulado medido en sitios relevantes. Las mediciones mostraron que la calidad del aire en los Llanos colombianos se deteriora significativamente durante los periodos de quema de biomasa. El contenido de aerosoles finos en la columna atmosférica incrementó el espesor óptico de aerosoles (AOD) de ~0.15 durante periodos con baja actividad del fuego, hasta ~1 durante periodos de quema de biomasa. La quema de biomasa afectó de forma similar a un sitio rural y un sitio suburbano cerca del piedemonte de los Andes, causando incrementos de PM10 de 21 µg/m³ y 26 µg/m³ en Taluma (rural) y Libertad (suburbano), respectivamente, durante un periodo de alta actividad de quema en los Llanos de Colombia y Venezuela. Los sitios más cercanos a la frontera con Venezuela experimentaron mayores impactos. Las concentraciones en Yopal y Arauca se incrementaron cerca de 70 µg/m³ durante un periodo de alta actividad de fuego en Venezuela. Los niveles de PM10 y carbono negro (BC) alcanzados durante la temporada de quemas en los Llanos son similares, e incluso mayores, a los observados en algunas estaciones del área urbana de Bogotá, donde existen múltiples fuentes móviles e industriales. Los aumentos de PM10 estuvieron relacionados con aumentos en los trazadores de quema de biomasa (BC y potasio soluble, K+ ) y trazadores de polvo. Técnicas exploratorias de atribución de fuentes demostraron que cerca del 80% de los aumentos observados de PM10 son causados por emisiones de quema de biomasa y 20% son debidos a emisiones de polvo. Una de las principales contribuciones de esta tesis fue el desarrollo de un indicador de la contribución de las partículas emitidas por fuegos a las concentraciones en el receptor (indicador CFER). Esta herramienta emplea la potencia radiativa del fuego (FRP) de las detecciones de fuegos activos de MODIS, como un proxy de las emisiones de quemas, y la huella de influencia generada a partir de simulaciones Lagrangianas estocásticas, para estimar la influencia de las emisiones por quemas en las concentraciones promedio diarias de aerosoles en los receptores. Este indicador se desempeñó razonablemente bien para las observaciones de PM10 en Yopal, Arauca y Taluma, y tiene el potencial para convertirse en una herramienta operacional combinando detecciones de fuego en tiempo casi real y simulaciones Lagrangianas. Los aumentos estimados de PM10 calculados con STILT subestiman significativamente los aumentos observados. El análisis reveló que la subestimación es insensible a los campos meteorológicos empleados (GDAS y WRF), la desagregación de emisiones y emisiones de otras fuentes. Los resultados sugieren que la subestimación está probablemente relacionada con la formación de aerosoles secundarios no incluidos dentro del enfoque de modelación empleado. Esta tesis contribuye al entendimiento del impacto de la quema de biomasa en la calidad del aire de la Orinoquia colombiana, abordando un problema de contaminación regional que no había sido previamente identificado en Colombia. Los resultados proveen una evidencia científica sólida del impacto de las quemas en los Llanos en la calidad del aire de las ciudades de la Orinoquia colombiana, provee por primera vez fuerte evidencia del transporte transfronterizo de la contaminación por quema de biomasa desde Venezuela, y también desarrolló un indicador que puede ser usado por las autoridades ambientales para predecir episodios de contaminación y tomar acciones para reducir la exposición de la población.

Tipo de documento:Tesis/trabajos de grado - Thesis (Doctorado)
Colaborador / Asesor:Jiménez Pizarro, Rodrigo
Información adicional:Doctor en Ingeniería – Ingeniería Química. Línea de investigación: Procesos ambientales.
Palabras clave:Biomass burning, Lagrangian simulations, Particulate matter, Orinoco River Basin, Aerosols, Quema de biomasa, Simulaciones Lagrangianas, Material particulado, Orinoquia, Contaminación transfronteriza, Aerosoles
Temática:6 Tecnología (ciencias aplicadas) / Technology > 66 Ingeniería química y Tecnologías relacionadas/ Chemical engineering
Unidad administrativa:Sede Bogotá > Facultad de Ingeniería > Departamento de Ingeniería Química y Ambiental
Código ID:74080
Enviado por : Andrea Juliana Hernandez Villamizar
Enviado el día :19 Septiembre 2019 14:48
Ultima modificación:19 Septiembre 2019 14:48
Ultima modificación:19 Septiembre 2019 14:48
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox