Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Clasificación basada en la estimación de Parzen en espacios generalizados de disimilitudes = Classification based on the Parzen estimation in generalized dissimilarity spaces

Trujillo Pulgarín, Carlos Alberto (2012) Clasificación basada en la estimación de Parzen en espacios generalizados de disimilitudes = Classification based on the Parzen estimation in generalized dissimilarity spaces. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales.

Texto completo

[img] PDF - Versión Enviada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

3MB

Resumen

Generalmente, en reconocimiento automático de patrones, un objeto está representado por sus características a través de un vector de m componentes, es decir perteneciente al espacio m-dimensional. El estudio sobre el espacio de características es la forma usual de trabajo en clasificación. Los objetivos de esta tesis incluyen examinar y estudiar una representación alternativa de los objetos, basada en medidas de disimilitud que, en este caso, no serán determinadas de la forma usual, la cual consiste en hallar la distancia entre los objetos en el espacio de disimilitudes, sino en hallar la distancia de objetos a líneas de características [21]. Siendo el concepto de línea de características él que permite realizar una generalización del espacio de disimilitudes, obteniendo de esta manera el denominado espacio generalizado de disimilitudes. Se pretende mostrar qué propiedades tiene el espacio generalizado de disimilitudes y como objetivo principalmente, si en él es posible estimar densidades de probabilidad y hacer uso de ellas para la clasificación de patrones. Tal estimación se basa en la estimación de densidades de probabilidad de Parzen, la cual se encuentra definida sobre el espacio de características; por consiguiente, modificando la estructura de este método, en particular sobre el algoritmo de la estimación de Parzen y adaptándolo para el espacio generalizado de disimilitudes, se pretende implementar el clasificador correspondientes a las modificaciones y adaptaciones del estimador de Parzen. Con el algoritmo modificado, la implementación del clasificador permitirá mostrar la eficiencia o ineficiencia de este método de clasificación sobre el espacio generalizado de disimilitudes, para lo cual se requiere de la adquisición de bases de datos -artificiales, obtenidas haciendo uso de sistemas de sensores o que ya estén dadas-, la medición del desempeño obtenido por este nuevo clasificador y la comparación con los resultados de clasificadores ya establecidos mediante el uso de diferentes métodos de validación. Es importante notar la importancia de la noción de línea de característica y tener presente el algoritmo de estimación de probabilidad de Parzen para espacios de características el cual ya se encuentra establecido / Abstract: Usually in automatic pattern recognition, an object is represented by its features, through a d components vector, i.e. belonging to the d-dimensional space. The study on the feature space is the usual form to work in classification. Part of the objectives is to examine and explore an alternative objects representation , based on dissimilarity measures, in this case these measures are determined, not in the usual way, which is to find the distance between objects in the dissimilarity space, in this case these measures are determined in a generalized dissimilarity space, this generalization is performed using features lines. We try to show which properties have this new space and the principal objective, estimate probability densities and used for classification, this estimate is based on the Parzen’s estimated probability densities which in principle is defined on the feature space, therefore modifying the structure of the estimation algorithm and adapting it for Parzen generalized dissimilarity space, is to implement the classifier corresponding to the modifications and adaptations of the Parzen estimator. With the modified algorithm, the creation of the classifier will show the efficiency or inefficiency of this alternative method of classification, which is required for the acquisition of datasets, whether artificial, obtained using sensor systems or already given, to observe the performance obtained by this new classification and compare the results of classifications established by using different methods of validation. It is important to note the importance of the notion of feature line and Parzen probability estimation in the feature space

Tipo de documento:Tesis/trabajos de grado - Thesis (Maestría)
Colaborador / Asesor:Orozco Alzate, Mauricio
Palabras clave:Espacio generalizado de disimilitudes; espacio de características; espacio de disimilitudes; línea de características; representación de disimilitudes; representación generalizada de disimilitudes; estimación de densidades de probabilidad de Parzen; estimación del parámetro de suavizado; inmersiones; reconocimiento de patrones // Generalized dissimilarity space; feature space; dissimilarity space; feature line; dissimilarity representation; generalized dissimilarity representation; Parzen probability estimation; smoothing parameter estimation; embedding; pattern recognition
Temática:0 Generalidades / Computer science, information & general works
5 Ciencias naturales y matemáticas / Science > 51 Matemáticas / Mathematics
6 Tecnología (ciencias aplicadas) / Technology > 62 Ingeniería y operaciones afines / Engineering
Unidad administrativa:Sede Manizales > Facultad de Ciencias Exactas y Naturales > Departamento de Matemáticas y Estadística
Código ID:9186
Enviado por : Biblioteca Digital Universidad Nacional de Colombia - Sede Manizales
Enviado el día :27 Febrero 2013 14:11
Ultima modificación:27 Febrero 2013 14:11
Ultima modificación:27 Febrero 2013 14:11
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox