Escudo de la República de Colombia
Sistema Nacional de Biliotecas - Repositorio Institucional Universidad Nacional de Colombia Biblioteca Digital - Repositorio Institucional UN Sistema Nacional de Bibliotecas UN

Modeling variability in generalized linear models

Cepeda-Cuervo, Edilberto Modeling variability in generalized linear models. Otro. Sin Definir. (No publicado)

Texto completo

[img]
Vista previa
PDF - Versión Enviada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

4MB

Resumen

This work proposes joint modeling of parameters in the biparametric exponential family, including heteroscedastic linear regression (non linear regression) models; with joint modeling of the mean and precision (the variance) parameters; beta regression models, longitudinal date analysis (including modeling of the covariance matrix) and hierarchical models. This work presents results of the classic approach to fit regression models for both mean and precision parameters in biparametric exponential family of distributions, which includes Bayesian methods for fitting the proposed models. And also extensions of the Bayesian methods to fit nonlinear regression models. Finally, proposes to use a Bayesian approach for modeling the covariance matrix in normal regression models when the observations are not independent. This document includes the following chapters: Chapter 1 is a introduction. Chapter 2 presents a summary of generalized linear models and the classical and Bayesian approaches to the parameters estimation, presenting the Fisher score method and a Bayesian approach using the Metropolis-Hastings algorithm. In Chapter 3, the heteroscedastic normal linear regression models are considered, including summaries of the classic method and Bayesian method proposed to fit these models. Chapter 4 is an extension of Chapter 3, which studies the regression models in the biparametric exponential family of distribution for mean and precision parameters. The following examples are included. 1. Gamma regression models with regression structures in the mean and precision (variance). 2. Beta regression models with regression structures in both mean and dispersion parameter. Several simulation studies were performed to illustrate these models and the proposed Bayesian methods. Chapter 5 discusses normal nonlinear heteroskedastic regression models. Chapter 6 include a Bayesian proposal to fit longitudinal regression models, where regression structures are assumed for the mean and the variance-covariance matrix of observations with Normal distribution (longitudinal data) Chapter 7 presents an extension of the methodology proposed in the previous chapters for adjusting hierarchical models.

Tipo de documento:Documento de trabajo - Monograph (Otro)
Palabras clave:Normal linear regression models; Gamma regression models; Beta regression models; Nonlinear regression models; Longitudinal data
Temática:3 Ciencias sociales / Social sciences > 31 Colecciones de estadística general / Statistics
Unidad administrativa:Sede Bogotá > Facultad de Ciencias > Departamento de Estadística
Código ID:9394
Enviado por : Dr. Edilberto Cepeda Cuervo
Enviado el día :19 Julio 2013 16:21
Ultima modificación:13 May 2016 17:07
Ultima modificación:13 May 2016 17:07
Exportar:Clic aquí
Estadísticas:Clic aquí
Compartir:

Solamente administradores del repositorio: página de control del ítem

Vicerrectoría de Investigación: Número uno en investigación
Indexado por:
Indexado por Scholar Google WorldCat DRIVER Metabiblioteca OAIster BASE BDCOL Registry of Open Access Repositories SNAAC Red de repositorios latinoamericanos eprints Open archives La referencia Tesis latinoamericanas OpenDOAR CLACSO
Este sitio web se ve mejor en Firefox