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Introduction

One of the fundamental problems of topology is to decide, given two topological

spaces, whether or not they are homeomorphic. This problem is known as the

Homeomorphism Problem. To effectively answer this question one must first

specify how a manifold is described and be sure that such a description is suitable

for input into a computing device.

The next step will be to come up with a general effective procedure to answer

this question when applied to a sufficiently general class of spaces, of a specific

dimension n ≥ 3 (PL manifolds, smooth manifolds, etc.) In this generality, it

turns out that for compact PL manifolds, the homeomorphism problem is unde-

cidable for spaces of dimension n ≥ 4, as was proved by A.A Markov (Mar58).

Furthermore, a dramatic improvement of the previous result was discovered by

S. P. Novikov (VKF74, pg.169) in the sense that for n ≥ 5, it is impossible to

recognize the n-sphere, and in fact the same holds for any compact n-dimensional

smooth manifold.

The main purpose of this monograph is to present, for those readers with

a basic background in algebra and topology, a detailed and accessible proof of

S.P. Novikov’s result. We follow the exposition that appears in the appendix of

(Nab95).

As a guide to the reader we offer an outline of the main points developed in

our treatment. First, we prove the algorithmic unrecognizability of the n-sphere

for n ≥ 5, according to the following steps:
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1. We start from a finite presentation of a group G with unsolvable word

problem.

2. Using the presentation for G we build a sequence of finitely presented groups

{Gi} such that {Gi} is an Adian-Rabin sequence.

3. Following Novikov, we modify the sequence {Gi} and obtain a new sequence

of finitely presented groups {G′i} which have trivial first and second homol-

ogy, such that {G′i} is an Adian-Rabin sequence, i.e., we obtain a Novikov

sequence.

4. Next, we construct a sequence of compact non-singular algebraic hyper-

surfaces Si ⊂ Rn+1, so that Si is a homology sphere and π1(Si) = G′i.

Moreover this is done in such a way that Si is diffeomorphic to Sn if and

only if G′i is trivial. (From The Generalized Poincaré Conjecture and The

Characterization of the smooth n-disc Dn, n ≥ 6.)

5. Finally, arguing by contradiction, we assume that the n-sphere is algorith-

mically recognizable. Thus, if we apply this presumed algorithm to the

elements of the sequence {Si} we could determine which of them are dif-

feomorphic to the n-sphere. This in turn would allow us to single out the

trivial elements of the given Novikov sequence, but this is clearly impossible.

As a final step, we apply the previous result to stablish the unrecognizability of

the compact smooth n-manifolds, n ≥ 5, according to the following steps:

1. Assume for simplicity that M0 is a connected n-dimensional manifold that

can be effectively recognized among the class of all compact n-dimensional

manifolds.

2. Fix a compact n-dimensional manifoldM effectively generated from a Novikov

sequence of groups and define M1 = M0#M .

3. Apply to M1 the procedure to recognize M0.

4. If the answer is No, then M is not a sphere.
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5. If the answer is Yes, note that π1(M) = 1 and then conclude that M is

the sphere, since the only simply connected n-manifold generated from a

Novikov sequence is the n-sphere.

6. From 4 and 5, an effective procedure to recognize M0 will allow us to rec-

ognize the n-sphere, which is a contradiction.
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Geometry and Topology

In this chapter we review some of the fundamental results from geometry and

topology that will be needed in the sequel.

2.1 Combinatorial Manifolds

In this section we assume that the reader is familiar with the basic techniques of

PL topology. In this regard, the classical reference is of course (RS82). A more

concise and modern treatment can be found in (SD01).

Definition. A (possibly infinite) polyhedra M ⊂ Rm is said to be a PL n-

manifold, if each point of M has a closed neighbourhood which is PL homeo-

morphic with an n-simplex.

Definition. Let X be a topological space. A triangulation for X consists of a

complex K and a homeomorphism t : |K| −→ X. Two triangulations t : |K| −→
X and t′ : |K ′| −→ X of X are equivalent if there is a PL homeomorphism

h : |K| −→ |K ′| such that t′ ◦ h = t. When the polyhedron |K| is a PL n-

manifold, the tuple (X, |K|, t) is called a combinatorial n-manifold (or PL

n-manifold), and the triangulations t : |K| −→ X is called a combinatorial

structure (or PL structure) for X.

Now that we have defined the general notion of a combinatorial manifold M ,

we will describe next what it means for a PL triangulation to be compatible with

a differential structure on M .
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2.1 Combinatorial Manifolds

Definition. Let t : |K| −→ M be a PL triangulation for (M,U), with U a

differential structure on M . We say that the combinatorial structure determined

by (|K|, t) is compatible with U, if for each simplex σ ∈ K there is a chart

φ : W −→ Hn in U such that t(σ) ⊂ W and φ(t(σ)) is a (rectilinear) simplex in

Hn.

Remark. It is worthwhile to mention, at this juncture, that, as was prove by

S.S Cairns and J.H.C Whitehead, see (Cai35) and (Whi40), every differentiable

manifold admits a compatible combinatorial structure.

2.1.1 Regular Neighbourhoods

Given a closed sub-complex C of a combinatorial manifold M , sometimes it is

useful to find a neighbourhood of C (in M) which retains as much of the topology

of C as possible. What we look for is usually described by topologists as “a small

neighbourhood of C” in M . Formally, let C ⊂ intM be a closed triangulated

subset of a combinatorial manifold M , with L ⊂ K simplicial complexes such

that φ : |K| −→ M is a PL triangulation such that φ(L) = C. Let K ′′ be

the second barycentric subdivision of K and ψ : K −→ K ′′ the corresponding

canonical map with L′′ ⊂ L such that ψ(L′′) = L.

Definition. The Regular Neighbourhood N of L is the family of simplices

N = {σ ∈ K ′′ |σ ∩ L′′ 6= ∅},

in other words N = Star(L′′, K ′′). The image of ψ(N) under φ is a (closed) regular

neighbourhood of C and the corresponding interior ofN is an open neighbourhood

of C.

Remark. A simplex σ ∈ K ′′ is in N if and only if some face of σ is also a simplex

in L. This guarantees that the interior of N will be an open set containing

L. Finally, by taking the second barycentric subdivision we make sure that the

neighbourhood is a “small” set containing L.

For our purposes, the relevant features of the notion of a regular neighbour-

hood are the following:
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2.2 Algebraic and Differential Topology

(i) If X and M are polyhedra X ⊂M with X compact, and M a combinatorial

manifold, it is always possible to find a regular neighbourhood of X in M .

(ii) Every regular neighbourhood of X is a compact combinatorial manifold

with boundary that retracts onto X.

2.2 Algebraic and Differential Topology

Since our main objective in this monograph is a detailed account of the un-

solvability of a problem involving smooth manifolds, we will need to make use

of some of the basic tools of algebraic and differential topology. We compile a

list of fundamental definitions and results from topology and geometry that will

be needed. Good standard references for algebraic and differential topology are

(Hat01), (Mau70), (MS74), and (Hir76), where the reader can find proofs of some

of the results stated below.

Theorem 2.2.1 (Van Kampen Theorem.) If X is the union of path-connected

open sets Aα each containing the base point x0 ∈ X and if each intersection

Aα ∩ Aβ is path connected, then the homomorphism: φ : ∗απ1(Aα) −→ π1(X) is

surjective. In addition if each intersection Aα ∩ Aβ ∩ Aγ is path connected, then

the kernel of φ is a normal subgroup N generated by all elements of the form

iαβ(w)iβα(w)−1, and so φ induces an isomorphism π1(X) ≈ ∗α(Aα)/N.

Proposition 2.2.2 Hn(K,L) ≈ FHn(K,L)⊕ THn−1(K,L).

Theorem 2.2.3 (Alexander Duality Theorem.) If A is a compact subset of

Rn, then for all q and R-modules G

H̃q(Rn \ A;G) ≈ H̃n−q−1(A;G).

Theorem 2.2.4 (Poincaré Duality Theorem.) If X is a closed R-orientable

n-manifold, then for all q and R modules G

Hq(X;G) ≈ Hn−q(X;G).

Theorem 2.2.5 Let X a triangulable path-connected n-manifold. Then Hn(X,Z) =

Z if X is orientable, and Hn(X) = 0 otherwise. In any case, Hn(X;Z2) = Z2.
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2.2 Algebraic and Differential Topology

Definition. Let X be a path-connected space. Suppose n ≥ 1 and let in be a

generator of Hn(Sn). The Hurewicz map ρn : πn(X) −→ Hn(X) is defined by

ρ([f ]) := f∗(in) for a representative f : Sn −→ X.

Theorem 2.2.6 (Hurewicz Isomorphism Theorem.) If X is (n−1)-connected

for some n ≥ 2, then hn : πn(X, x0) −→ Hn(X, ) is an isomorphism.

Theorem 2.2.7 (Whitehead Theorem.) Let X and Y be path-connected pointed

spaces and let f : (X, x0) −→ (Y, y0) be a map. If there is n ≥ 1 such that

f# : πq(X, x0) −→ πq(Y, y0)

is an isomorphism for q < n and an epimorphism for q = n, then

f∗ : Hq(X, x0) −→ Hq(Y, y0)

is an isomorphism for q < n. Conversely, if X and Y are simply connected and

f∗ is an isomorphism for q < n and an epimorphism for q = n, then f# is an

isomorphism for q < n and an epimorphism for q = n.

Theorem 2.2.8 (Theorem of Hopf.) For any path-connected space X with fun-

damental group G, there is an exact sequence

π2(X)
ρ−→ H2(X;Z) −→ H2(G;Z) −→ 0

where ρ is the Hurewicz map.

Definition. Let X ⊂ Rn be a smooth manifold. For each point x ∈ X define

the space of normals to X at x to be

Nx(X) = {v ∈ Rn : v ⊥ TXx} .

The total normal space E(νX) of X in Rn is defined by:

E(νX) := {(x, v) ∈ X × Rn : v ⊥ TXx} .

Definition. Given a submanifold X ⊂ Rn and a continuous function ε : X −→
(0,∞), we introduce the following notation,

Nε(X) = {(x, v) ∈ N(X) | |v| < ε(x)} .
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2.2 Algebraic and Differential Topology

Theorem 2.2.9 (Tubular Neighborhood Theorem.) Let X ⊂ Rn be a proper

submanifold without boundary and let U be a neighborhood of X in Rn. Then

there exists a continuous function ε : X −→ (0,∞) and a diffeomorphism φ :

Nε(X) −→ V , onto an open neighborhood V of X in U , such that φ(x, 0) = x for

all x ∈ X. In particular, X is a strong deformation retract of V . Moreover, if X

is compact, then we can choose a constant ε > 0, such that V = Vε′ =
⋃
x∈X

Bε′(x).

Theorem 2.2.10 (Isotopy Extension Theorem.) Let f : M −→ N be an

imbedding of a manifold M in a manifold N with ∂N = ∅. Let K ⊂ M be

a compact subset and F : M × R −→ N × R be the track of an isotopy of f .

Then there is G : N × R −→ N × R which is the track of an isotopy such that

G(f(x), t) = F (x, t) for all x ∈ K and t ∈ [0, 1]. Moreover, G is the identity map

outside a compact subset of N × R.

Definition. (i) A hypersurface imbedded in a manifold is a submanifold of

codimension one.

(ii) A homology n-sphere is an n-manifold M with homology groups all isomor-

phic to those of the n-sphere Sn.

(iii) A homotopy n-sphere is an n-manifold M which it is homotopy equivalent

to the n-sphere Sn.

Theorem 2.2.11 (The Jordan-Brouwer Separation Theorem.) Let X be

a compact, connected hypersurface in Rn+1. The complement of X in Rn+1 con-

sists of two connected open sets, the “outside” D0 and the “inside” D1. Moreover,

D1 is a compact manifold with boundary equal to X.

Proposition 2.2.12 (Characterization of the smooth n-disc Dn, n ≥ 6.) Suppose

W n is a compact simply connected smooth n-manifold, n ≥ 6, with a simply con-

nected boundary. The following statements are equivalent.

(i) W n is diffeomorphic to Dn.

(ii) W n is homeomorphic to Dn.

(iii) W n is contractible.
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2.2 Algebraic and Differential Topology

(iv) W n has the (integral) homology of a point.

Proof. See Proposition A in Chapter 9 of (Mil65).

�

Proposition 2.2.13 (The Generalized Poincaré Conjecture.) If M is a closed

simply connected smooth n-manifold, n ≥ 5, with the (integral) homology of the

n-sphere Sn, then M is homeomorphic to Sn. If n = 5 or 6, M is diffeomorphic

to Sn.

Proof. See (Sma61).

�

Theorem 2.2.14 Let S be a smooth homotopy n-sphere, n ≥ 5, which is also a

hypersurface (i.e., smoothly embeds in Rn+1). Then S is homeomorphic to Sn if

and only if S is diffeomorphic to Sn.

Proof.

(⇐) It is clear.

(⇒) If a homotopy sphere is imbedded in Euclidean space as a hypersurface

S, then it separates the space into two components. (2.2.11.) The closure W n+1

of one of these components is a compact manifold whose boundary is S. (See

Theorem 2.2.11.) Additionally, it can be checked that it is contractible. (Using

Alexander Duality Theorem 2.2.3, Whitehead Theorem 2.2.7 and Van Kampen’s

Theorem 2.2.1.). Then, by Proposition 2.2.12 W n+1 is diffeomorphic to Dn+1 and

therefore S is diffeomorphic to Sn.

�

Remark. An application of Whitehead Theorem 2.2.7 and the Hurewicz Iso-

morphism Theorem 2.2.6 shows that a homology n-sphere, n > 1, is a homotopy

sphere if and only if it is simply connected.

Corollary 2.2.15 Let S be a smooth homology n-sphere, n ≥ 5, which is also a

hypersurface. Suppose that S has trivial fundamental group. Then S is homeo-

morphic to Sn if and only if S is diffeomorphic to Sn.

9



2.2 Algebraic and Differential Topology

Corollary 2.2.16 Let S be a smooth homology n-sphere, n ≥ 5, which is also a

hypersurface. Then S is diffeomorphic to Sn if and only if π1(S) = 1.

Proof.

(⇒) It is clear.

(⇐) By Proposition 2.2.13 S is homeomorphic to Sn, and by Corollary 2.2.15,

it follows that S is diffeomorphic to Sn.

�

Theorem 2.2.17 (Whitney Embedding Theorems.) Let N and M be man-

ifolds of dimension n and m respectively, and let f : N −→M be a smooth map.

Then we have the following:

(i) If 2n + 1 ≤ m, then f is homotopic to an imbedding N ↪→ M , and for

2n+ 2 ≤ m, any two homotopic imbeddings are isotopic.

(ii) If m = 2n ≥ 6 and π1(M) = {1}, then f is homotopic to an imbedding

N ↪→M .

Proof. See (Ran02) Chapter 7.

�

Remark. In this monograph we will make use of the so-called “general position

arguments” which form part of the typical reasoning closely associated with the

concept of transversality, both in the PL and smooth categories. For more de-

tails in the smooth case, we refer the reader to the now classical sources (Bre93),

Section 15, Chapter II, and (Hir76), Section 2, Chapter 3. Especially, we will

use corollaries 15.6 and 15.7 of the former and theorems 2.4 and 2.5 of the lat-

ter. Finally, for the PL category we recommend the standard references (RS82),

Chapter 5 and (SD01) Chapter 5.

Finally, as an illustration of a typical argument of general position, we state

and prove the following important result. See (Ran02), Lemma 7.28.

Lemma 2.2.18 Let f : N −→M be an immersion with image V = f(N) ⊂M .

If m ≥ 5 and m− n ≥ 3 then π1(M \ V ) = π1(M).

10



2.3 Algebraic and Geometric Surgery

Proof. The morphism π1(M \ V ) −→ π1(M) induced by inclusion is surjective,

since every map S1 −→ M can be moved away from V by general position. In

order to prove that the morphism is injective consider an element x ∈ ker(π1(M \
V ) −→ π1(M)), which may be represented by a commutative square

S1

��

i //M \ V

��
D2 j //M

with i an embedding. Since m ≥ 5 j is homotopic to an embedding (leaving

the embedding i fixed). Now ensure that V ∩j(D2) = ∅. By general position move

j(D2) away from V by an arbitrarily small perturbation leaving j an embedding,

and leaving i alone on S1. The result is an embedded j(D2) ⊂ M \ V with

∂(j(D2)) = i(S1), so that x = 1 ∈ π1(M \ V ).

�

2.3 Algebraic and Geometric Surgery

In topology, surgery is a procedure for changing one manifold into another of the

same dimension and as suggested by its name, it involves some cutting, removing

and replacing. Specifically, suppose we have a smooth n-dimensional manifold

M . A surgery on M has the effect of excising a copy of Sm × Dn−m, m ≤ n,

and replacing it by Dm+1 × Sn−m−1, since these two manifolds share the same

boundary, Sm × Sn−m−1.

In order to perform a surgery on a manifold one needs an imbedded product of

a sphere, which usually belongs to a specific homology class, and a disk. Having

such product is, by virtue of the Tubular Neighborhood Theorem, the same as

finding an imbedded sphere with a trivial normal bundle.

We sketch next the basic results connected with bundles and imbeddings that

constitute the foundations of surgery theory. We follow the general treatment

that appears in (Ran02) and (KM07).

11



2.3 Algebraic and Geometric Surgery

2.3.1 Bundles

Definition. A Fibre Bundle is a sequence of spaces and maps

F −→ E
p−→ B

that is “locally trivial” in the following sense: for all b ∈ B there exists an open

neighbourhood b ∈ U ⊂ B such that

φ : p−1(U)

p
&&

// U × F
proy1

��
U

where φ is a homeomorphism.

The space B is called the base space, E is called the total space and the map

p is called the projection of the bundle. For each b ∈ B, F = p−1(b) is called

the fibre of the bundle over b ∈ B.

Definition. (i) A k-plane bundle or vector bundle (X, η) is a fibre bundle

Rk −→ E(η)
p−→ X

such that

(a) each fibre η(x) = p−1(x), x ∈ X, is a k-dimensional real vector space,

(b) for each x ∈ X the homeomorphism φ : U × Rk −→ p−1(U) is such

that for each u ∈ U the restriction of φ to {u} × Rk is a isomorphism

of vector spaces.

(ii) A bundle map (f, b) : (X ′, η′) −→ (X, η) is a commutative diagram of

maps

E(η′)

p′

��

b // E(η)

p

��
X ′

f // X

12



2.3 Algebraic and Geometric Surgery

such that
b(x′) := b|η′(x′) : η′(x′) −→ η(f(x′))

v 7→ b(v)

is a linear map of vector spaces for each x′ ∈ X ′.

Definition. (i) The pullback bundle or induced bundle of a k-plane bun-

dle η over X along a map f : X ′ −→ X is the k-plane bundle f ∗η over X ′

defined by

E(f ∗η) = {(x′, y) ∈ X ′ × E(η) | f(x′) = p(y) ∈ X};

with projection map
p′ : E(f ∗η) −→ X ′

(x′, y) 7→ x′,

and fibres

f ∗η(x′) = η(f(x′)), x′ ∈ X ′.

(ii) A pullback bundle map is a bundle map (f, b) : (X ′, η′) −→ (X, η) such

that each of the linear maps

b(x′) := b|η′(x′) : η′(x′) −→ η(f(x′))
v 7→ b(v)

is an isomorphism of vector spaces, i.e, such that the function

E(η′) −→ E(f ∗η)
y 7→ (p′(y), b(y))

is a homeomorphism.

(iii) An isomorphism b : η′ −→ η of bundles over the same space X is a

pullback bundle map of the type (1, b) : (X, η′) −→ (X, η).

Definition. (i) A k-plane bundle η over a space X is trivial if it is isomorphic

to the trivial bundle εk with projection

p : E(εk) = X × Rk −→ X
(x, y) 7→ x.

13



2.3 Algebraic and Geometric Surgery

(ii) A framing (or trivialisation) of a k-plane bundle η is an isomorphism to

the k-plane bundle εk.

(iii) The Whitney sum of a j-plane bundle α and a k-plane bundle β over X

is the (j + k)-plane bundle α⊕ β over X defined by

E(α⊕ β) = {(u, v) ∈ E(α)× E(β) | pα(u) = pβ(v) ∈ X}

with fibres

(α⊕ β)(x) = α(x)⊕ β(x), x ∈ X.

Definition. Let η be a k-plane bundle over a space X. The disk bundle of η is

D(η) = {v ∈ E(η) | ‖v‖ ≤ 1}.

Definition. Let 1 ≤ k ≤ n.

(i) The Grassmann manifold Gk(Rn) is the set of all k-dimensional sub-

spaces of Rn.

(ii) The canonical k-plane bundle over Gk(Rn), given by

γk(Rn) = {(W,x) |W ∈ Gk(Rn), x ∈ W},

has projection
γk(Rn) −→ Gk(Rn)
(W,x) 7→ W.

Now the inclusions Rn ⊂ Rn+1 ⊂ Rn+2 ⊂ . . . induce, in turn, inclusions of

the corresponding Grassmann manifolds, which allows us to take the direct

limit

BO(k) := lim−→Gk(Rn) = Gk(R∞).

Now we have set the stage for one of the main results in the theory of vector

bundles.

Theorem 2.3.1 (Bundle Classification Theorem.) Let X be a finite CW

complex.

14



2.3 Algebraic and Geometric Surgery

(i) Every k-plane bundle over X is isomorphic to the pullback f ∗γk(R∞) of the

canonical k-plane bundle 1k = γk(R∞) over the classifying space BO(k) =

Gk(R∞) along a map f : X −→ BO(k):

f ∗γk(R∞)

��

// γk(R∞)

��
X

f // BO(k).

(ii) There are bijections:{
Isomorphism classes of

k-plane bundles over X

}
←→

{
Homotopy classes of maps

X −→ BO(k).

}

(iii) The trivial k-plane bundle εk is classified by the trivial map {∗} : X −→
BO(k).

(iv) The pullback f ∗η of a k-plane bundle η : X −→ BO(k), along a map

f : X ′ −→ X, is classified by the composite f ∗η : X ′
f−→ X

η−→ BO(k).

Proof. See Chapter 5 of (MS74).

�

Remark. The above classification theorem allows to talk indistinctly of vector

bundles and their classifying maps.

Proposition 2.3.2 (i) Every vector bundle η : X −→ BO(k) has a stable

inverse, i.e., a vector bundle −η : X −→ BO(j), j large, such that

η ⊕−η = εj+k : X −→ BO(j + k).

(ii) A k-plane bundle η can be framed, is trivial, if and only if the classifying

map η : X −→ BO(k) is null-homotopic.

Definition. (i) A stable isomorphism between a k-plane bundle η and a

l-plane bundle η′ over the same space X is a bundle isomorphism

b : η ⊕ εj = η′ ⊕ εr

for some j, r ≥ 0 with j + k = r + l.
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2.3 Algebraic and Geometric Surgery

(ii) A stable bundle over X is an equivalence class of bundles η over X, subject

to the equivalence relation

η ∼ η′ if there is stable isomorphism η ⊕ εj = η′ ⊕ εr for some j, r ≥ 0.

(iii) A k-plane bundle η is stably trivial if η ⊕ εj is trivial for some j ≥ 0.

(iv) X is said stably parallelizable, abbreviated s-parallelizable, if its tangent

bundle is stably trivial.

Lemma 2.3.3 Let ξk be a k-dimensional vector bundle over a complex K of

dimension p < k. If the Whitney sum of ξk with a trivial bundle εr is trivial, then

ξk itself is trivial.

Proof. See Lemma 4 of (Mil61).

�

Given two vector bundles ξ : X −→ BO(j), ζ : X −→ BO(k) we can form a

(j+k)-plane bundle by taking the Whitney sum ξ⊕ ζ. This behaves nicely since:

BO(j)⊕BO(k) ↪→ BO(j + k)
(ξ, ζ) 7→ x

Thus ξ⊕ζ : X −→ BO(j)⊕BO(k) ⊂ BO(j+k). This suggests that we can form

the direct limit with respect to the inclusions BO(k) −→ BO(k + 1) by passing

from ξ to (ξ, ζ). Hence

BO := lim−→BO(k).

Proposition 2.3.4 Let X be a finite CW complex and BO = lim−→BO(k) the

classifying space. Then there is a bijection between the isomorphism classes of

stable vector bundles over X and the homotopy classes of maps X −→ BO.

Proof. See Proposition 5.31 of (Ran02).

�

Proposition 2.3.5 (i) The pair ((BO(k + 1), BO(k))) is k-connected.

(ii) If k > m then two k-plane vector bundles η, η′ over an m-dimensional finite

CW complex X are isomorphic if and only if they are stably isomorphic.

Proof. See Proposition 5.33 of (Ran02).

�
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2.3 Algebraic and Geometric Surgery

2.3.2 The tangent and normal bundles

Definition. (i) Let M be an m-dimensional manifold with atlas U. We define

the tangent bundle of M as the m-plane bundle τM : M −→ BO(m) with

total space the open 2m-dimensional manifold

E(τM) =

 ∐
(U,φ)∈U

U × Rm

 / ∼

where

(x ∈ U, h ∈ Rm) ∼ (x′ ∈ U ′, h′ ∈ Rm)

if

x = x′ ∈ U ∪ U ′ ⊂M, d(φ′−1φ)φ−1(h) = h′,

and projection map
p : E(τM) −→ M

(x, h) 7→ x

The tangent space to x ∈M is the m-dimensional vector space

τM(x) =

 ∐
(U,φ)∈U, x∈U

{x} × Rm

 / ∼

such that

E(τM) =
⋃
x∈M

τM(x).

(ii) The differential of a given differentiable map f : N −→ M is the bundle

map df : τN −→ τM given by

(x ∈ V, h ∈ Rn) 7→ (f(x) ∈ U, d(φ−1fψ)ψ−1(x)(h)).

Remark. An immersion f : N −→ M induces an injection of tangent spaces

dfx : τN(x) −→ τM(f(x)). Therefore it is possible to identify τN(x) with a

subspace of τM(f(x)). Choosing a metric on M we can define an inner product

〈 , 〉 : τM(f(x))× τM(f(x)) −→ R
(v, w) 7→ 〈v, w〉

17
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such that the orthogonal complement of τN(x)

τN(x)⊥ = {v ∈ τM(f(x)) | 〈v, τN(x)〉 = 0},

is a subspace and thus, there is a corresponding Whitney sum decomposition

τN(x)⊕ τN(x)⊥ = τM(f(x)).

Definition. The normal bundle νf : N −→ BO(m − n) of an immersion f :

N −→M is the (m− n)-plane bundle over N with total space

E(νf ) =
⋃
x∈N

νf(x)

where

νf(x) = τN(x)⊥ ⊂ τM(f(x)),

and is such that there is a Whitney sum decomposition

τN(x)⊕ νf = f ∗τM = N −→ BO(m).

Definition. A framing of an immersion f : N −→M is a framing of the normal

bundle νf : N −→ BO(m− n)

b : νf ' εm−n.

Next we want to discuss normal bundles independently of immersions.

Definition. Let M be a m-dimensional manifold.

(i) Let f : M −→ Sm+k, k ≥ 1, be an imbedding satisfying that τM ⊕ νf = εm+k :

M −→ BO(m + k). We define a normal bundle of M by νM := νf : M −→
BO(k).

(ii) The stable normal bundle of M is the unique map νM : M −→ BO

represented by the normal k-bundle νM : M −→ BO(k) of any imbedding

M −→ Sm+k, k large, such that

τM ⊕ νM = ε∞ : M −→ BO.

Proposition 2.3.6 Every compact hypersurface M is s-parallelizable.

18



2.3 Algebraic and Geometric Surgery

Proof. By the Jordan-Brouwer Separation Theorem 2.2.11, M bounds a compact

submanifold of dimension n+1 in Rn+1. Therefore, M is orientable. Now, consider

the Gauss mapping

g : M −→ Sn

which assigns to each p ∈ M the outward unit normal vector at x, i.e., g(x) is

the unit length, outward pointing vector in TM⊥
x . Now define

h : M × R −→ E(νM)
(x, t) 7→ h(x, t) = (x, tg(x)).

The function h is smooth, bijective, and has smooth inverse given by h−1(x, v) =

(x, v ·g(x)). Thus E(νM) is diffeomorphic to ε1. Therefore τM⊕ε1 = τRn+1 = εn+1.

�

Example. The tangent bundle of Sn in Rn+1. The total space of this bundle

is the set

E =
{

(x, v) ∈ Sn × Rn+1 |x ⊥ v
}

and the corresponding map is p : E −→ Sn defined by p(x, v) = x. To construct

local trivializations, for each x ∈ Sn, let Ux ⊂ Sn be the open hemisphere contain-

ing x and bounded by the hyperplane through the origin orthogonal to x. Define

hx : p−1(Ux) −→ Ux × p−1(x) by hx(y, v) = (y, πx(v)), with πx the orthogonal

projection onto the hyperplane p−1(x). Then hx is a local trivialization, since πx

restricts to an isomorphism of p−1(y) onto p−1(x), for each y ∈ Ux.

Example. The normal bundle of Sn in Rn+1. This bundle has total space

E =
{

(x, v) ∈ Sn × Rn+1 | v ⊥ TSnx ⇐⇒ v = tx, for some t ∈ R
}

and map p : E −→ Sn defined by p(x, v) = x. Note that in order to construct

local trivializations the functions hx : p−1(Ux) −→ Ux × R can be obtained by

orthogonal projection of the fibers p−1(y) onto p−1(x), for y ∈ Ux.

Proposition 2.3.7 The normal bundle νf : Sn −→ BO(m−n) of an immersion

g : Sn −→M is such that:

νf ⊕ τSn = f ∗τM ∈ πn(BO(m)),
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2.3 Algebraic and Geometric Surgery

νf ⊕ εn+1 = f ∗(τM ⊕ ε) ∈ πn(BO(m+ 1)),

νf = −f ∗(νM) ∈ πn(BO).

Theorem 2.3.8 (Tubular Neighbourhood Theorem.) Let N and M be man-

ifolds of dimension n and m respectively. An imbedding (immersion) f : N −→
M extends to a codimension 0 imbedding (immersion) E(νf ) −→ M of the total

space of the (m− n)-plane bundle νf : N −→ BO(m− n).

Proof. See Theorem 11.1 (MS74).

�

Remark. In particular, if νf is trivial we can imbed (immerse) the disk bundle

D(νf ) ' N × Dm−n −→M .

Proposition 2.3.9 There is a bijection between the framings (if any) of an

imbedding f : N −→M and the extensions of f to an imbedding f : N×Dm−n −→
M .

Proof. See Proposition 5.58 of (Ran02).

�

2.3.3 Surgery

With the previous array of results at our disposal, we set the machinery of surgery

in motion.

Definition. An (m+1)-dimensional cobordism (W ;M,M ′) is an (m+1)-dimensional

manifold W with boundary the disjoint union of closed m-dimensional manifolds

M,M ′.

Definition. Let N and M be smooth manifolds of dimension n and m respec-

tively and f : N −→M an imbedding. Then,

(i) f is a framed imbedding if it extends to an imbedding

f : N × Dm−n −→M.
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(ii) The imbedding

f = f |N × {0} : N × {0} −→M

is called the core of the framed imbedding.

Definition. Given an (m + 1)-dimensional manifold with boundary (W,∂W )

and a framed imbedding Si−1 × Dm−(i−1) −→ ∂W , 0 ≤ i ≤ m + 1, we define the

(m + 1)-dimensional manifold with boundary (W ′, ∂W ′), obtained from W by

attaching an i-handle, to be the space

W ′ = W
⋃

Si−1×Dm−i+1

Di × Dm−i+1.

Definition. An n-surgery on an m-dimensional manifold M removes the image

of a framed n-imbedding f : Sn×Dm−n −→M and replaces it with Dn+1×Sm−n−1.

The corresponding effect of this surgery is the m-dimensional manifold

M ′ = (M \ g(Sn × Dm−n))
⋃

Sn×Sm−n−1

Dn+1 × Sm−n−1.

Even more, the n-surgery kills the corresponding homotopy class [f ] ∈ πn(M)

of the core.

Definition. The trace of the n-surgery on Sn × Dm−n ⊂ M is the (m + 1)-

dimensional cobordism (W ;M,M ′) obtained by attaching an (n + 1)-handle

Dn+1 × Dm−n to M × I at Sn × Dm−n × {1}.

Theorem 2.3.10 Let M be an m-dimensional manifold. The following condi-

tions on an element x ∈ πn(M) are equivalent:

(i) x can be killed by an n-surgery on M ,

(ii) x can be represented by a framed n-imbedding f : N × Dm−n −→M ,

(iii) x can be represented by an n-imbedding f : Sn −→ M with trivial normal

bundle νf : Sn −→ BO(m− n).

Proof. (i)⇐⇒ (ii) it follows easily from the definitions involve.

(ii) ⇐⇒ (iii) by Proposition 2.3.9 there is a a bijection between the framings

(if any) of an imbedding f : Sn −→ M and extensions of f to an imbedding

f : Sn × Dm−n −→M .
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�

Next we observe that, below the middle dimension, the possibility of killing

an element of πn(M) is completely determined by the stable normal bundle νM :

M −→ BO:

Corollary 2.3.11 If 2n < m an element x ∈ πn(M) can be killed by a surgery

if and only if (νM)∗x
1 = 0 ∈ πn(BO).

Proof. By the Whitney Embedding Theorems 2.2.17 there is an imbedding f :

Sn −→M . Now, stabilise the identity νf ⊕ τSn = f ∗τM by adding ε

νf ⊕ (τSn ⊕ ε) = f ∗(τM ⊕ ε)

and use that the sphere is s-parallelizable, τSn ⊕ ε = εn+1, in the last equality

νf ⊕ εn+1 = f ∗(τM ⊕ ε).

We stabilise further by adding f ∗νM and obtain a stable isomorphism

(νf ⊕ f ∗νM)⊕ εn+1 = f ∗(τM ⊕ ε)⊕ f ∗νM = f ∗((τM ⊕ νM)⊕ ε) = ε∞,

hence νf ⊕ f ∗νM is stably trivial.

It follows that the vanishing of f ∗νM = (νM)∗x ∈ πn(BO) is equivalent to the

vanishing of νf ∈ πn(BO). But this is equivalent to νf = 0 ∈ πn(BO(m− n)) as

πn(BO(m− n)) = πn(BO).

�

Let M be an m-dimensional manifold and S ⊂ M a (k − 1)-dimensional

sphere, imbedded with a trivial normal bundle in the interior of M . The fol-

lowing proposition gives conditions guaranteeing that the subgroup of Hk−1(M),

generated by the corresponding homology class of S, can be killed by a surgery.

Proposition 2.3.12 If i = k − 1 and m ≥ 2k,

Hi(M
′) = Hi(M)/ [S] .

1 Here if x is represented by g : Sn −→ M , then f∗νM : Sn g−→ M
νM−→ BO is what we

denoted by (νM )∗x.
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2.3 Algebraic and Geometric Surgery

Proof. See Proposition 1.1 in Chapter X of (KM07).

�

Remark. Surgery is usually described as a process that generates topological

manifolds but, in fact, the process can be performed carefully enough so that

the resulting manifolds will be smooth. Topologists do not usually worry about

smoothing a topological manifold, resulting from a surgery, due to the fact that

such manifolds can always be endowed with a unique compatible differential struc-

ture. For details, we recommend (Hir76), Chapter 8, Section 2.

2.3.4 The Whitney Trick

Suppose that we have an immersion, for example, of the circle in the plane and

there are “places” where the image crosses itself. In certain situations it is de-

sirable to get rid of these crossings by simply “sliding” the function so that it

becomes a smooth imbedding (we should think in terms of isotopies). It is not

difficult to image the analogous situation in the n-dimensional case and, in gen-

eral, it turns out that getting rid of these crossings is not an easy task. In an

attempt to solve this problem H. Whitney came up with a famous method, now

known as the Whitney trick, in his proof of his fundamental embedding the-

orems. The trick amounts to taking these self-intersection points in pairs and

sliding the manifold through itself in order to eliminate them two at a time. (If

there is an odd number to begin with, then it must first introduce an extra one.)

A detailed treatment of the conditions justifying the application of Whitney’s

move, would take us to far afield. An excellent treatment appears, for example, in

(Ran02) Chapter 7, especially the first three sections, where the interested reader

can find all the relevant details.
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2.4 An important notion from Riemannian Geometry

2.4 An important notion from Riemannian Ge-

ometry

Finally we introduce a basic notion from Riemannian Geometry that will be use

of the proof of our main result. For a detailed treatment see (Pet06).

Definition. Let M be a smooth manifold. By a vector field on M we mean a

smooth map σ : M −→ E(τM) such that p ◦ σ = IdM , where p is the projection

of the tangent bundle of M .

Definition. A Riemannian Manifold is a smooth manifold M together with

a choice of an inner product 〈 , 〉p in each TMp such that, if X and Y are two

smooth vector fields then the function

g(X, Y ) : M −→ R
p 7→ g(X, Y )p = 〈X(p), Y (p)〉p

is smooth. We shall denote this Riemannian manifold with the pair (M, g).

The function g is called a Riemannian metric.

Remark. The smooth manifold Rn, with the standard inner product at each

tangent space, is a Riemannian manifold.

Definition. Let f : M −→ N be an immersion and (N, g) a Riemannian man-

ifold. Then g(X, Y ) := g(dfp(X), dfp(Y ))f(p) defines the induced (pullback)

Riemannian metric on M .

Definition. Definition Let γ : (a, b) −→ M be a curve, then the length of γ is

defined to be

l(γ) :=

∫ b

a

||γ′(t)||dt,

where || · || is the induced norm of the inner product.

Theorem 2.4.1 Let (M, g) be a connected Riemannian manifold. Let x, y ∈M .

Then

dM(x, y) := inf{l(γ) | γ is a curve joining x to y}

defines a metric on M .
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Definition. Definition Let M be a Riemannian manifold. A curve γ : (a, b) −→
M is a geodesic if:

(i) γ has constant speed.

(ii) for all t ∈ (a, b) there exists an ε > 0 such that dM(γ(x), γ(y)) = l(γ|[x, y]),

for all x, y ∈ (t− ε, t+ ε).

Theorem 2.4.2 Let M be a Riemannian manifold. The for any x ∈ M and

any v ∈ TMx, there is a geodesic γxv : (−ε, ε) −→ M such that γxv(0) = x and

γ′xv(0) = v.

Based on the last theorem, we can finally define a very important map from

the tangent bundle of a manifold M to itself:

We let

E := {(x, v) ∈ TM | γxv is defined on an interval containing [0, 1]}

be the domain of the exponential map, defined by

exp : E −→ M
(x, v) 7→ exp(x, v) = γxv(1).

Definition. For each x ∈ M we define the injectivity radius of (M, g) at x

to be

injx(M, g) = sup{r | γxv is injective onBr(0) ⊂ TMx}

and the injectivity radius of (M, g) to be

inj(M, g) = inf{injx(M, g) |x ∈M}.

Definition. Let N be a submanifold of a Riemannian manifold M and consider

the tangent bundle τN , which is a sub-bundle of the restriction τM |N , then the

orthogonal complement τ⊥N ⊂ τM |N is called the normal bundle ν of N in M .

Proposition 2.4.3 For any smooth submanifold N of a smooth Riemannian

manifold M the normal bundle ν is defined, and

τN ⊕ ν = τM |N.
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Definition. Let N be a submanifold of a Riemannian manifold M . We define

the normal exponential map for M as the exponential map restricted to the

normal bundle ν of N in M .

Remark. Informally, with M is compact, we can think of the injectivity ra-

dius of the normal exponential map for M as the maximal radius of the non-

selfintersecting open tubular neighbourhood around M .
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3

Algebra

In this chapter we introduce the machinery necessary to state and prove some

fundamental results from group theory and K-theory that will be needed in the

next chapters. For some of the details, we refer the reader to the standard

references (Ros78) and (Ros94).

We start with some basic results describing well known fundamental properties

of the commutator subgroup:

Theorem 3.0.4 Let K ≤ H ≤ G with K �G. Then

(i) H �G if and only if [H,G] ≤ H.

(ii) H/K ≤ Z (G/K) if and only if [H,G] ≤ K.

Proof. See (Ros78), exercise 162.

�

Theorem 3.0.5 Let K �G.

(i) If x, y ∈ G then, in G/K,

[xK, yK] = [x, y]K.

(ii) If H, J ≤ G

[HK/K, JK/K] = [H, J ]K/K.

In particular, [G/K,G/K] = [G,G]K/K.
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Proof. See (Ros78), exercise 164.

�

The next two statements capture some basic properties of free groups. For

the corresponding proofs we recommend, for example, (Rot94), Chapter 11.

Theorem 3.0.6 Let F be the free (not necessarily abelian) group on a set X and

[F, F ] the commutator subgroup of F . Then

(i) [F, F ] � F and F/[F, F ] is abelian.

(ii) F/[F, F ] is free abelian of rank |X|.

Theorem 3.0.7 (The Projective Property of Free Groups.) Let F be a free

group and let G and H be two groups. Assume that α : F −→ G is a homo-

morphism and β : H −→ G an emorphism. Then there is a homomorphism

γ : F −→ H such that α = βγ.

Definition. Let G be a group and let A be an abelian group. A central exten-

sion of G by A is a pair (E, φ) such that

(1) E is group,

(2) φ is a homomorphism E −→ G such that

1 −→ A −→ E −→ G −→ 1

is exact,

(3) A ⊂ Z(E) = {e ∈ E| ex = xe for all x ∈ E}.

Remark. The class of central extensions of G generates a category, which we

can formalize as follows:

(1) (E, φ) is an object of the category,

(2) For (E, φ) and (E ′, φ′), a morphism (E, φ) −→ (E ′, φ′) is a commutative

diagram
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E

ψ
��

φ // G

E
φ′ // G.

Definition. Let C be the category mentioned in the previous remark.

(1) A central extension (E, φ) of G by A is called trivial if it is isomorphic in

C to G× A p1−→ G.

(2) A central extension (E, φ) of G is universal if for any other central extension

(E ′, φ′) of G, there is a unique morphism (E, φ) −→ (E ′, φ′).

Now we can state and prove the main result of this section. See (Ros94),

Theorem 4.1.3

Theorem 3.0.8 Let G be a group. Then we have the following:

(1) G has a universal central extension if and only if it is perfect, that is,

G = [G,G].

(2) Assuming that G is perfect, a central extension (E, φ) of G is universal if

and only if the following two conditions hold:

(i) E is perfect.

(ii) all central extensions of E are trivial.

Even more, if (i) and (ii) hold and

1 −→ R −→ F −→ G −→ 1

is a presentation of G then, the universal central extension (E, φ) can

be constructed as E = [F, F ]/[F,R], with

φ : [F, F ]/[F,R] −→ [F, F ]/R = [F/R, F/R] = [G,G] = G

the quotient map.

Proof. (1) (⇒):

If G is not perfect, G/[G,G] 6= 0. Let ψ : G −→ G/[G,G] be the quotient

map. Now if (E, φ) is a central extension of G, we can construct two distinct

morphisms from (E, φ) to the trivial extension (G×G/[G,G], p1),
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E

δ=(φ,1)
��

φ // G

G×G/[G,G]
p1 // G

E

δ′=(φ,ψ◦φ)
��

φ // G

G×G/[G,G]
p1 // G.

This shows that (E, φ) cannot be universal. Hence, for G to have a universal

central extension, G must be perfect.

(2) (⇐):

Suppose G is perfect. Let (E, φ) be a central extension of G satisfying (i)

and (ii) and let (E ′, φ′) be an arbitrary central extension of G.

(Uniqueness of a morphism.) Suppose ψ, ψ′ : (E, φ) −→ (E ′, φ′) are

two morphisms of central extensions

E

ψ ψ′

��

φ // G

E ′
φ′ // G.

Let x ∈ E. Then (φ′ ◦ ψ)(x) = (φ′ ◦ ψ′)(x) so that ψ(x) = cxψ
′(x) for some

cx ∈ A′ = ker(φ′). Similarly, if y ∈ E, then ψ(y) = cyψ
′(y) for some cy ∈ A′.

Hence,

ψ([x, y]) = [ψ(x), ψ(y)]
= [cxψ

′(x), cyψ
′(y)]

= cxψ
′(x)cyψ

′(y)(cxψ
′(x))−1(cyψ

′(y))−1

= cxc
−
x 1cyc

−
y 1ψ′(x)ψ′(y)(ψ′(x))−1(ψ′(y))−1

= [ψ′(x), ψ′(y)]
= ψ′([x, y])

because cx and cy lie in the center. Hence ψ and ψ′ coincide on commutators.

Since E = E ′ by (i), ψ and ψ′ coincide on all of E.

(Existence of a morphism.) We construct a morphism ψ : (E, φ) −→
(E ′, φ′). Consider

E ′′ = E ×G E ′ = {(x, y) ∈ E × E ′ |φ(x) = φ(y)}.

Since φ and φ′ are surjective, the projection p1 on the first factor is a

surjective homomorphism from E ′′ to E. Thus we have a commutative

diagram
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E ′′

p2
��

p1 // E

��
E ′

φ′

φ◦p1=φ′◦p2
// G.

(3.1)

Note that since

ker(p1) = {(1, y) ∈ E × E ′ | y ∈ ker(φ′)},

ker(p1) ' ker(φ′) = A′ so that it is central. It the follows that (E ′′, p1) is

a central extension of E. By (ii), this central extension is trivial, which

means that there is an isomorphism from (E ′′, p1) to (E × A′)

E ′′

δ o
��

p1 // E

E × A′ p̃1 // E,

(3.2)

where in the previous diagram p̃1 is the projection on the first factor and

p1 = p̃1 ◦ δ implies p1 = p1 ◦ δ−1.

Now if i : E ↪→ E × A′ is the homomorphism defined by i(e) = (e, 1) then

ψ ≡ p2 ◦ δ−1 ◦ i : E −→ E ′ is such that

E

ψ
��

φ // G

E ′
φ′ // G.

since

p1(δ−1(e, 1))
3.2
= p̃1(e, 1)

by definition
= e,

it follows that

φ(e) = φ(p1(δ−1(e, 1)))
3.1
= φ′(p2(δ−1(e, 1)))

definition of ψ
= φ′(ψ(e)).

Since (E ′, φ′) was arbitrary and we already showed that morphisms from

(E, φ) to (E ′, φ′) are unique, then (E, φ) is a universal central extension of

G.
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(1) (⇐):

Claim 1. Let E = [F, F ]/[F,R], with

φ : [F, F ]/[F,R] −→ [F, F ]/R = [F/R, F/R] = [G,G] = G

the quotient map. Then (E, φ) is a central extension of G.

Justification. Note that R is a normal subgroup of F so that [F,R] is

likewise a normal subgroup of F . Let E1 = F/[F,R]. Then, E ⊂ E1 and

E1 also projects onto G via the quotient map φ1 : F/[F,R] −→ F/R = G,

and φ = φ1|E. Note that ker(φ1) ⊂ R/[F,R] 1, hence [E1, ker(φ1)] ⊂
[F,R]/[F,R] = 12 ⇐⇒ kerφ1 ⊂ Z(E1). Thus (E1, φ1) is a central extension

of G, hence (E, φ) is also a central extension of G. (E ⊂ E1 and φ1 = φ|E.)

�

Claim 2. (E, φ) satisfies (i), i.e., [E,E] = E.

Justification. First note that E = [E1, E1], thus

w ∈ [E1, E1]

if and only if

w =
k∏
i=1

[ei, e
′
i]
δi for some ei, e

′
i ∈ E1 and δi = ±1

if and only if

w =
k∏
i=1

[fi[F,R], f ′i [F,R]]δi for some fi, f
′
i ∈ F and δi = ±1

1 ker(φ1) = {x[F,R] ∈ F/[F,R] |xR = R} = {x[F,R] ∈ F/[F,R] |x ∈ R} ⊂ R/[F,R].
2 If w ∈ [E1, kerφ1] then w =

k∏
i=1

[ei, ki]
δi where δi = ±1, ei ∈ F/[F,R] and ki ∈ R/[F,R].

Thus w =
k∏
i=1

[fi, ri]
δi [F,R] ∈ [F,R]/[F,R] for some fi ∈ F and ri ∈ R.
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if and only if

w =
k∏
i=1

[fi, f
′
i ]
δi [F,R] for some fi, f

′
i ∈ F and δi = ±1

if and only if

w ∈ E.

On the other hand, since φ is surjective onto G and φ1 = φ|E it follows that

every element e1 ∈ E1 can be written as k1 · e for some k1 ∈ ker(φ1), e ∈ E.

Since ker(φ1) ⊂ Z(E1), then E1 ⊂ Z(E1) · E = E · Z(E1), therefore E1 =

E · Z(E1). So we obtain

E = [E1, E1] = [E · Z(E1), E · Z(E1)] = [E,E].

�

Claim 3. (E, φ) satisfies (ii), i.e., all central extensions of E are trivial.

Justification. Let

1 −→ A −→ E2
ψ−→ E −→ 1

be any central extension of E. This induces an extension (E3, p1) = (E1×G
E2, p1) of E1,

E3 = E1 ×G E2

p2
��

p1 // E1

φ1
��

E2
ψ // E

φ // G,

where E1 ×G E2 = {(x, y) ∈ E1 × E2 |φ1(x) = (φ ◦ ψ)(y)}.
In fact, this is actually a central extension. Indeed, ker(p1) ' ker(φ ◦ ψ),

since ker(p1) = {(1, y) ∈ E1 × E2 | y ∈ ker(φ ◦ ψ)}. Now,

ψ([E2, E2]) = [ψ(E2), ψ(E2)] = [E,E] = E,

and thus E2 = [E2, E2] · A. Also, ψ([E2, ker(φ ◦ ψ)]) ⊂ [E, ker(φ)] = 1 so

that [E2, ker(φ ◦ ψ)] ⊂ A. This implies that for x ∈ ker(φ ◦ ψ) and s, t ∈
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E2, [x, s], [x, t] ∈ A so that xsx−1 = sz1, xtx
−1 = tz2 for some z1, z2 ∈ A.

Hence x[s, t]x−1 = [xsx−1, xtx−1] = [sz1, tz2] = [s, t]. Thus x commutes

with [E2, E2]. Since x also commutes with A (A is central), it commutes

with all of E2, and E3 is a central extension of E1.

Since F is free we can fill in the above diagram

F
γ

tt
α
��

E3 = E1 ×G E2

p2
��

p1 // E1

φ1
��

E2
ψ // E

φ // G

where γ : F −→ E3 lifts the quotient map α : F −→ E1. (Theorem

3.0.7.) This amounts to a homomorphism θ : F −→ E2 such that for

x ∈ F , (φ ◦ ψ)(θ(x)) coincides with the image of x in G ' F/R. So

θ(R) ⊂ ker(φ ◦ ψ ⊂ Z(E2)), and

θ([F,R]) ⊂ [θ(F ), θ(R)] ⊂ [E2, Z(E2)] = 1.

Hence θ descends to θ : E1 = F/[F,R] −→ E2 which, together with the

identity map on E1, gives a splitting (id, θ) : E1 −→ E3 = E1 ×G E2 of p1.

Restricting to E then gives a trivialization of ψ : E2 −→ E, verifying (ii).

The final conclusion is that, when G is perfect, the (E, φ) from Claim 1 is

a universal central extension of G.

(2) (⇒): This follows from uniqueness, since we just constructed a universal

central extension satisfying (i) and (ii).

�

�

Proposition 3.0.9 Let G = < x1, . . . , xn | r1, . . . , rm > be a finitely presented

group, F the free group on {x1, . . . , xn} and R ⊂ F the normal closure of
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{r1, . . . , rm}. Suppose that G is perfect and choose ci ∈ [F, F ] such that xici ∈ R.

Then the following is a presentation for the universal central extension of G:

< x1, . . . , xn | xici, [xi, rj] for i = 1, . . . , n; j = 1, . . . ,m > .

Proof. (Bri08, pg.12) We first note that it is possible to choose ci ∈ [F, F ] such

that xici ∈ R. This follows because G = F/R is perfect and thus F/R = [G,G] =

[F, F ]R/R, which implies F = [F, F ]R. Thus we conclude that xiR = wiR for

some wi ∈ [F, F ] and therefore xiw
−1
i R = R⇐⇒ xiw

−1
i ∈ R.

Now, Let K ⊂ F be the normal closure of the relators in the above presen-

tation. We must prove that F/K is isomorphic to [F, F ]/[F,R], the universal

central extension of G.

First, we note that [F,R] ⊂ K.

Now, let X̃ := {x1c1, . . . , xncn}. Since xici ∈ R, the image of X̃, under the

canonical projection, in F/[F,R], is central. In particular K/[F,R] is abelian,

generated by the image of X̃.

Since the image of X̃ generates F/[F, F ], the natural map K/[F,R] −→
F/[F, F ] is onto. Moreover, as the image of X̃ is a basis for F/[F, F ] ' Zn, it must

also be a basis for K/[F,R]. Hence the natural map K/[F,R] −→ F/[F, F ] is an

isomorphism. In particular the kernel of this map is trivial, so K∩[F, F ] ⊂ [F,R].

But [F,R] ⊂ K, so K ∩ [F, F ] ⊂ [F,R].

Now consider the map [F, F ] −→ F/K. As xici ∈ K and ci ∈ [F, F ], the

image of this map contains xiK for i = 1, . . . , n. Thus the map is onto. Its kernel

is [F, F ] ∩ K, which we just proved is [F,R]. Therefore F/K is isomorphic to

[F, F ]/[F,R].

�

Corollary 3.0.10 Let G be a perfect group. Then, a central extension (E, φ) of

G is universal if H1(E,Z) = 0 and H2(E,Z) = 0.

Theorem 3.0.11 Let G be a perfect group. Then, the kernel of the universal

central extension (E, φ) of G is naturally isomorphic to A = H2(G,Z).
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4

Computability

In this chapter we want to fix our notion and terminology regarding the theory of

computability and related notions. In this vain, our informal notion of a procedure

can be identified with the formal notion of a Turing Machine. A fundamental

concept in the theory of computability is that of recursively enumerable set, which

we try to capture in the following definition.

Definition. (i) A subset A ⊂ N is Recursively Enumerable if there is a

Turing Machine that stops only when run on a tape containing the represen-

tation of a member of A. Informally, this means that there is a procedure

that can potentially enumerate all the elements of A and only the elements

of A.

(ii) A subset A ⊂ N is Recursive if both A and N \A are recursively enumer-

able. Informally, this means that there is a procedure that can decide, for

any n ∈ N, in finitely many steps, whether or not n is an element of A.

Remark. Even though the previous definitions apply to subsets A ⊂ N it can

be naturally extended to any class of objects that can be codified by natural

numbers.

Using the previous terminology we can describe informally what it means to

solve a problem P algorithmically. Initially, the problem P consists of a class of

“positive instances”. These instances can be coded by natural numbers and the
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4.1 Undecidable Problems in Group Theory

corresponding class of codes forms a set A ⊂ N. To solve the problem P is to find

an algorithm recognizing the set A. In other words, the problem P is solvable if

and only if the set A is recursive.

The first problem known to be effectively unsolvable was intimately connected

with the existence of a set A ⊂ N which is recursively enumerable but not re-

cursive. Such a problem came to be known as the Halting problem and its

unsolvability was established by Alan Turing in 1937. Formally, the Halting

problem asks whether there is a Turing machine that can decide, for any other

Turing machine M , whether or not M stops when started on an empty tape.

Theorem 4.0.12 (A. Turing, 1937.) The Halting problem is algorithmically

unsolvable.

4.1 Undecidable Problems in Group Theory

Motivated by topology, Max Dehn, in his attempts to understand low dimensional

manifolds, posed in 1910 three fundamental questions of combinatorial group

theory. Assuming that the groups involved are finitely presented, these questions

can be stated as follows:

1. The word problem. Is there an algorithm to recognize the identity of a

group? More precisely:

Given a word w in the generators of G, does w represent 1 in G?

2. The conjugacy problem. Is there an algorithm to decide whether two

given elements of a group are conjugate? In more detail:

Given words w1 and w2 in the generators of G, do w1 and w2 represent

conjugate elements of G?

3. The Isomorphism Problem Is there an algorithm to decide whether two

given groups are isomorphic? Being precise:

Can we find a procedure that, given any two finitely presented groups G

and H, can decide whether or not they are isomorphic?
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4.1 Undecidable Problems in Group Theory

There are many classes of groups for which the word problem is decidable.

For instance, finite groups, finitely presented abelian groups, and free groups on

finitely many generators. Nevertheless, P.S. Novikov, (Nov58), and W. Boone

(Boo59) independently proved that there is a finitely presented group for which

the word problem is unsolvable.

Theorem 4.1.1 (Novikov-Boone-Britton, 1954-1958.) There is a finitely pre-

sented group G that has an algorithmically unsolvable word problem.

The analogue for finitely presented semigroups had been proved earlier, by E.

Post and A. Markov (Rot94, p. 428).

Theorem 4.1.2 (Markov-Post, 1947.) There is a semi-group G that G has

algorithmically unsolvable word problem.

The proofs of these results are based on a natural reduction to the Halting

problem. For further details on the unsolvability of these problems, and also for

a self contained treatment on computability, we recommend (Rot94) Chapter 12.

Finally we mention that the unsolvability of the word problem implies directly

the corresponding unsolvability of the conjugacy problem.

4.1.1 The Triviality Problem

The remaining decision problem of combinatorial group theory is the fundamental

Triviality Problem, which asks whether there is a procedure to decide the

triviality of any finitely presented group G. As in the previous cases, this problem

can be reduced to the solution of the word problem. But in fact, something even

more general is true, as we describe next.

Definition. An algebraic property of finitely presented groups, i.e. a property

that is preserved under isomorphism, is called a Markov property if it satisfies

the following conditions:

(i) there is a finitely presented group G+ with the property,

(ii) there is a finitely presented group G− which cannot be embedded in a group

with the given property.
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4.1 Undecidable Problems in Group Theory

There are many examples of Markov properties. Some examples are triviality,

finiteness, abelianess, simplicity, freeness, and having solvable word problem. Us-

ing the undecidability of the word problem, Adian (Ady57) and Rabin (Rab58)

proved, independently, the following fundamental result. (We follow the proof

sketch in the exposition paper (And05).)

Theorem 4.1.3 (Adian-Rabin, 1957-1958.) Let P be a Markov property. Then

there is no algorithm which decides whether or not any finitely presented group

has the property P.

Proof. Fix a Markov property P, as well as groups G+ and G− showing P to

be a Markov property, and G, a group with unsolvable word problem. We will

construct a recursive sequence of groups Hw for each word w ∈ G. This will be

done in such a way that Hw has the property P if and only if w is trivial in

G. In order to do this, we will use the following technical algebraic lemma whose

proof can be found in (Mil90).

Lemma 4.1.4 Let K be a group with a specified finite presentation

K = 〈X |R〉,

X = {x1, . . . xn}. Fix a word w in the generators of K. Let S be the following

set of relations

a−1ba = c−1b−1cbc

a−2b−1aba2 = c−2b−1cbc2

a−3 [w, b] a3 = c−3bc3

a−(3+i)xiba
(3+i) = c−(3+i)bc(3+i), i = 1, . . . , n,

where [w, b] is the commutator. Next, define

Lw = 〈{a, b, c} ∪X |S ∪R〉.

Then we have the following:

(i) Lw is generated by two elements: b and ca−1,

(ii) If w = 1 in K, then Lw is trivial,
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4.1 Undecidable Problems in Group Theory

(iii) If w 6= 1 in K, then K is embedded in Lw via the inclusion of generators.

Assuming the lemma, we will generate the sequence of groups Hw as follows:

Let

K = G ∗G−

be the co-product of G with G−. The group K it is generated by the disjoint

union of the relation-sets for G and G−. Then its presentation can be written

easily. (The fact that the co-product remains in the range of finitely presented

groups is very important.) Now, for any word w ∈ G, consider w as a word in K

and construct Lw as in the lemma. Then, let

Hw = Lw ∗G+.

This is again a co-product construction. Thus, all along, the construction could

easily have been done by a machine with input w and with access to the finite

presentation of G,G− and G+. We see that if w = 1 ∈ G then w = 1 ∈ K and

Lw is trivial. If w 6= 1 then w 6= 1 ∈ K, and K embeds in Lw. Therefore, K

embeds in Hw. But G− embeds in K. This yields G− in Hw, which implies Hw

does not have the property P. Thus, a recursive way to decide whether Hw has

the property P would solve the word problem for G, which is impossible.

�

As a consequence of the previous theorem it follows that the triviality problem

is unsolvable. In then follows immediately the unsolvability of the isomorphism

problem.

Theorem 4.1.5 The isomorphism problem for finitely presented groups is un-

solvable.

Proof. Since being trivial is a Markov property, it is undecidable whether or

not a group is isomorphic to the trivial group. But the triviality problem is a

subproblem of the isomorphism problem, so the result follows.

�
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4.1 Undecidable Problems in Group Theory

We next introduce a very important related concept which plays a decisive

role in the proof of the main unsolvability result of this monograph.

Definition. A recursive family of finitely presented groups is an Adian-Rabin

sequence if there is no algorithm to check whether an arbitrary element of the

sequence represents the trivial group.

Definition. An Adian-Rabin sequence whose elements have trivial first and sec-

ond homology groups, will be called a Novikov sequence.

The final result of this section has to do with the technical fact that given

a finitely presented perfect group, there is a procedure to effectively construct a

finite presentation of its universal central extension.

Proposition 4.1.6 There exists an algorithm that, given a finite presentation

< X |Σ > of a perfect group G, will output a finite presentation < X | Σ̃ > for

the universal central extension of G. (See Proposition 3.0.9.)

Proof. (Bri08, pg.13) Let F be the free group on X = {x1, . . . xn}. We start by

pointing out the following facts:

(i) It is possible to enumerate the elements of F effectively. The enumeration

proceeds by stages: at stage k, all the words of length k are generated

systematically, for example according to the lexicographic order.

(ii) It is possible to enumerate the elements d0, d1, . . . of [F, F ] effectively. At

stage k, we generate the words of length 2k containing the words generated

at stage k in (i). (It is known that, for any group G, its commutator

subgroup is the set [G,G] = {a1a2 · · · an ·a−1
1 a−1

2 · · · a−1
n | ai ∈ G andn ≥ 2}.)

(iii) It is possible to enumerate the elements ρ0, ρ1, . . . of the normal closure of

Σ. At stage k the procedure generates all the words of length k of the form
k∏
i=1

firif
−1
i , where fi is a word generated at stage k of (i) and ri is a relator.

(iv) It is possible to enumerate effectively the elements of the form (di, ρj),

where di ∈ [F, F ] and ρj belongs to the normal closure of Σ. At stage k the

procedure generates all pairs involving d0 to dn and ρ0 to ρn.
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4.2 Semi-algebraic Sets

Now, since G is perfect, it follows from the facts mentioned above that there

exists an effective procedure to enumerate the elements of Σ̃:

The procedure generates systematically the list of all pairs (di, ρj) and for each

x ∈ X, in turn, it runs through the products xdiρj to check whether any of them

is equal to the identity in F (that is, freely equal to the empty word). Since the

given group G is perfect, the procedure eventually finds indices i(x) and j(x) such

that xdi(x)ρj(x) is equal to the identity in F . Finally, the main algorithm that we

seek outputs

Σ̃ = {xdi(x) |x ∈ X} ∪ {[σ, xk] |σ ∈ Σ, x ∈ X}.

�

4.2 Semi-algebraic Sets

Since our purpose is to prove a smooth version of Markov’s Theorem we will

introduce in this section some basic concepts from Real Algebraic Geometry.

Our fundamental tool will be the famous Tarski-Seidenberg Thorem. The main

references here are (Mar08), (Cos00), and (BPCR06).

Definition. Let R be a real closed field. If P is a finite subset of R[x1, . . . , xk],

we denote the set of zeros of P in Rk as

Zer(P, Rk) =

{
x ∈ Rk

∣∣∣∣∣ ∧
P∈P

P (x) = 0

}
.

These are the algebraic sets of Rk = Zer({0} , Rk).

Definition. The family of semi-algebraic sets of Rk is the smallest class con-

taining the algebraic sets, as well as the sets of the form
{
x ∈ Rk |P (x) > 0

}
with

P ∈ R[X1, . . . , Xk], and which is closed under boolean operations (complementa-

tion, finite unions, and finite intersections).

Remark. Any semi-algebraic set in Rk is the finite union of sets of the form{
x ∈ Rk |P (x) = 0 ∧

∧
Q∈Q

Q(x) > 0

}
.

These are the basic semi-algebraic sets.
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4.2 Semi-algebraic Sets

We give now some examples of semi-algebraic sets.

Example. (i) The semi-algebraic sets of R are the union of finitely many

points and open intervals.

(ii) An algebraic subset of Rn, defined by polynomial equations, is semi-algeraic.

(iii) If A ⊂ Rm and B ⊂ Rn are semi-algebraic, then A× B is a semi-algebraic

subset of Rm × Rn.

Definition. Let S ⊂ Rk and T ⊂ Rl be semi-algebraic sets. A function f :

S −→ T is semi-algebraic if its graph Graph(f) is a semi-algebraic subset of

Rk+l.

We give now some examples of semi-algebraic functions.

Example. (i) If f : A −→ B is a polynomial mapping, i.e., all its coordinates

are polynomial, it is semi-algebraic.

(ii) If f : A −→ R is a semi-algebraic function, then |f | is semi algebraic.

Furthermore, if f ≥ 0 on A, then
√
f is semi-algebraic

Proposition 4.2.1 (i) The direct image and the inverse image of a semi-

algebraic set by a semi-algebraic mapping are semi-algebraic.

(ii) The composition of two semi-algebraic mappings is semi-algebraic.

Definition. A non-singular algebraic hypersurface is the zero set Zer(Q,Rk)

of a polynomial Q ∈ R[x1, . . . , xk] such that the gradient of Q, i.e. the vector

Grad(Q)(p) =

(
∂Q

∂x1

(p), . . . ,
∂Q

∂xk
(p)

)
is never 0 for p ∈ Zer(Q,Rk).

We will now introduce our main tool in this section.

We consider systems of polynomial equations and inequalities of the form
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4.2 Semi-algebraic Sets

S(X) :


f1(X) .1 0

...
fk(X) .k 0

where .i ∈ {≥, >,=, 6=} and each fi(X) is a polynomial in n variablesX1, . . . , Xn

with coefficients in Q.

Theorem 4.2.2 (Tarski-Seidenberg) Given a system of polynomial equations

and inequalities S(T,X) in m + n variables T1, . . . , Tm, X1, . . . , Xn with coeffi-

cients in Q, there exist finitely many systems of polynomial equations and in-

equalities S1(T ), . . . , Sl(T ), with coefficients in Q, such that, for each real closed

field R and each t = (t1, . . . , tm) ∈ Rm, the system S(t,X) has a solution

x = (x1, . . . , xn) ∈ Rn if and only if t is a solution of one of the systems

S1(T ), . . . , Sl(T ).

Remark. There is a general procedure which computes the systems S1(T ), . . . , Sl(T ),

in terms of the system S(T,X).

Now, we specify what it is meant by a first-order formula in the language of

real closed fields. A first-order formula is a formula obtained by the following

constructions:

1. If f ∈ Q[X1, . . . , Xn], n ≥ 1, then f ≥ 0, f > 0, f = 0, and f 6= 0 are

first-order formulas.

2. If Φ and Ψ are first-order formulas, then the following are first-order for-

mulas as well, Φ and Ψ, Φ or Ψ, and not Φ. These are often denoted by

Φ ∨Ψ,Φ ∧Ψ and ¬Φ respectively.

3. If Φ is a first-order formula then ∃XΦ and ∀XΦ are first-order formulas.

Those formulas obtained using only constructions 1 and 2 are called quanti-

fier free formulas.

Definition. We say that two first-order formulas Φ(X1, . . . , Xn) and Ψ(X1, . . . , Xn)

are equivalent if for every real closed field R and every x ∈ Rn, Φ(x) holds in R

if and only if Ψ(x) holds in R.
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4.3 Finite presentation of differentiable and combinatorial manifolds

Theorem 4.2.3 (Tarski-Seidenberg, General Form.) Every first-order for-

mula in the language of real closed fields is equivalent to a quantifier-free for-

mula,i.e., the language of real closed fields admits elimination of quantifiers.

Proof. See Appendix I of (Mar08).

�

4.3 Finite presentation of differentiable and com-

binatorial manifolds

At this point, it becomes necessary to discuss the technical detail of how to

represent, in a finite notation, a given combinatorial or differentiable manifold.

An extended discussion of this topic, along with a very plausible solution, appears

in (BHP68), Section 3.2, whose treatment we adopt without reservations.

The contention is that a finite presentation M of an n-manifold M , should

satisfy the following conditions:

(i) M is a finite sequence of symbols in some language,

(ii) there is an algorithm to determine whether any given finite notation in this

language represents a manifold,

(iii) associated with each presentation M, there is precisely one n-manifold

M(M), represented by M.

(iv) the notation M represents M(M) in a “natural” way.

As to the interpretation of (iv), the point of view adopted in (BHP68), is that

a finite presentation M of a differentiable and combinatorial manifold should

have the property that a C∞ atlas U of M(M), and a corresponding compatible

triangulation ∆, should be described by M.

One way to fulfill the previous requirements is the adoption of the notion of an

Algebraic Atlas Presentation M, associated with a given manifold M̂ . This

notation allows the effective recovery of either the combinatorial or differential

structure of the given manifold M̂ . The corresponding formal statement is as

follows:
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4.4 From Adian-Rabin to Novikov sequences

Theorem 4.3.1 ((BHP68), Section 3.2, Theorem 4.) For every closed dif-

ferentiable n-manifol M̂ there exists (a finite) algebraic atlas presentation M such

that the manifold M(M) presented by M is diffeomorphic to M̂ . Moreover, the

concept of algebraic presentation fulfills the requirements (i), (ii),(iii) stated at

the beginning of this section, and corresponding to (iv) the following:

(iv′) if an algebraic atlas presentation M is given, then the corresponding C∞-

atlas U(M) presented by M can be recursively computed in a natural way.

4.4 From Adian-Rabin to Novikov sequences

Suppose that
∏

= {πi}i∈N is an Adian-Rabin sequence. Since there is an al-

gorithm that checks whether H1(πi,Z) is 0, (see, for example, (Mil90)) we can

construct a new recursive sequence∏′ = {π ∈∏ |H1(π,Z) = 0} ..

Since the trivial group π0 has H1(π0,Z) = 0, it follows that the property of being

a trivial element in
∏′ is not algorithmically recognizable. We then conclude that∏′ is indeed an Adian-Rabin sequence.

Now from
∏′ we will construct a Novikov sequence, using the following result:

Theorem 4.4.1 Given a finite presentation of a group π, with H1(π,Z) = 0, one

can effectively construct a presentation of a new group π̃, with a central extension

1 −→ H2(π,Z) −→ π̃ −→ π −→ 1, (4.1)

such that H1(π̃,Z) = H2(π̃,Z) = 0.

Proof. Let 〈h1, . . . , hk | q1, . . . , qm〉 be a presentation of the group π and consider

the exact sequence

1 −→ R −→ F −→ π −→ 1, (4.2)

where F is the free group on the generators h1, . . . , hk of π and R is the normal

closure of the relators q1, . . . , qm. Since H1(π,Z) = 0 ⇐⇒ π/[π, π] = 0 it follows
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4.4 From Adian-Rabin to Novikov sequences

that π is perfect. Then by Theorem 3.0.8 it has a universal central extension given

by π̃ : [F, F ]/[F,R] −→ π. Furthermore, Theorem 3.0.11 implies that the kernel

of π̃ : [F, F ]/[F,R] −→ π is [F, F ] ∩ R/[R,F ] = H2(π,Z) (by Hopf’s formula,

(Hop42)) and we thus obtain the exact sequence

1 −→ H2(π,Z) −→ π̃ −→ π −→ 1.

On the other hand, Corollary 3.0.10 asserts that H1(π̃,Z) = H2(π̃,Z) = 0.

The effectiveness of the construction of π̃ follows from Corollary 4.1.6.

�

Finally we note that by applying the previous theorem to the modified se-

quence
∏′ we obtain a new Adian-Rabin sequence:∏̃

=
{
π̃ |π ∈

∏′} .
Theorem 4.4.2

∏̃
is, in fact, a Novikov sequence.

Proof. If π = 0, H2(π,Z) = 0. Therefore, in the central extension 4.1, we have

1 −→ 0 −→ π̃ −→ 0 −→ 1

and thus π̃ = 0. Now, if π̃ = 0 in the central extension 4.1, we have

1 −→ H2(π,Z) −→ 0 −→ π −→ 1,

but the exactness of this sequence implies that π = 0. Therefore π = 0 if and

only if π̃ = 0. Since there is no algorithm that can decide whether π ∈
∏′ is the

trivial group, there is similarly no algorithm for π̃ ∈
∏̃

.

�
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5

Superperfect Groups and

Homology Spheres

In this chapter we finally present the main result of this monograph, whose proof

hinges on the intimate connection, discovered by M.A. Kervaire, between some

very special groups (the superperfect groups) and the so-called homology spheres.

These groups are special because their first and second homology groups are triv-

ial. We will start with a such a group π and show how to construct effectively

a compact non-singular algebraic hypersurface S ⊂ Rn+1 so that S is a homol-

ogy sphere and π1(S) = π. Moreover we will do this in such a way that S is

diffeomorphic to Sn if and only if π is trivial. (Corollary 2.2.16.)

The idea is to use the so-called Dehn construction 1 to generate a 2-dimensional

simplicial complex K such that π1(K) = π. In the next step one “extends” K

to a regular neighbourhood N in Rn+1, and then smooths out the corners of this

neighbourhood. The result is a hypersurface Q ⊂ Rn+1 obtained by taking the

boundary of the smoothed out neighbourhood N mentioned above. Such a hyper-

surface is a compact n-dimensional manifold Q with fundamental group π. The

explicit details of this construction can be found in (BHP68), Lemma 6, Section

3.3. Even more, it can be shown using the Poincaré Duality Theorem 2.2.4, that

the homology groups of Q are trivial, except for the second and the (n − 2)th,

which are the direct sum of several copies of Z.

1For details see (Mau70), Theorem 3.3.20

48
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In fact, it can be proved that Hn−2(Q;Z) = H2(Q;Z). We start by noting

that, by Theorem 2.2.5, Hn(Q) = Z because Q ⊂ Rn+1 is a hypersurface and

therefore orientable. Furthermore, using Proposition 2.2.2, we obtain

H2(Q) ≈ FH2(Q;Z)⊕ TH1(Q;Z).

But as we mentioned above H2(Q;Z) is free abelian and therefore

FH2(Q;Z) = H2(Q;Z),

consequently, applying Poincaré Duality Theorem we finally obtain

Hn−2(Q;Z) = H2(Q) = FH2(Q;Z)⊕����
���:0

TH1(Q;Z) = H2(Q;Z).

In the next stage of the construction one realizes all generators of the sec-

ond homology group of Q by imbedded 2-spheres and kills them by surgeries.

Once all generators of the second homology group of Q will be killed, we must

smoothed out the corners. The result will be a compact hypersurface S which is

the smoothed out boundary of a tubular neighbourhood of a finite 3-dimensional

acyclic complex K imbedded in Rn+1 and such that π1(K) = π.

5.1 Computing Normal Bundles

Let’s assume then that we already have the hypersurface Q with the stated prop-

erties mentioned above, then by virtue of H. Hopf’s Theorem 2.2.8, and the fact

that H2(π;Z) is trivial, we obtain the exact sequence

π2(Q)
ρ−→ H2(Q;Z) −→ H2(π;Z) −→ 0.

Now, the First Isomorphism Theorem for groups implies that

H2(π;Z) ' H2(Q;Z)/ρπ2(Q).

But H2(π;Z) = 0 and therefore the Hurewicz homomorphism ρ is surjective.

Thus, all generators of H2(Q;Z) can be represented by continuous functions from

S2 into Q. Furthermore, by Whitney’s imbedding Theorems 2.2.17 we can find an
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5.1 Computing Normal Bundles

imbedding f : S2 −→ Q such that f ∈ π2(Q) and f is homotopic to f . (Theorem

2.2.17.) Hence all generators of H2(Q;Z) can be realized by imbedded spheres.

Now Theorem 2.2.10 guarantees that these generators can be represented by non-

intersecting imbedded spheres. Next we will prove that these spheres satisfy a

very special condition.

Claim 1. The imbedded spheres realizing the generators of H2(Q;Z) have trivial

normal bundles.

Justification. Let’s start by pointing out that any homotopy class of functions

from S2 to Q contains an imbedding

f : S2 −→ Q.

(See (Whi36), Theorem 2.) In the sequel, we use the following notation:

τnQ will denote the tangent bundle of Q, f ∗τnQ the restriction of this bundle to

S2, similarly τS2 will denote the tangent bundle of S2, and finally εk is the trivial

k-dimensional vector space bundle over S2. We know that the induced bundle

f ∗τnQ over S2 splits as the Whitney sum of a sub-bundle isomorphic to τS2 and a

complementary sub-bundle νf , that is,

f ∗τnQ ' τS2 ⊕ νf . (5.1)

Now the fact that ε1 ⊕ τS2 is trivial, follows from the next two facts:

1. The normal bundle of S2 ∈ R3 is isomorphic to the product bundle ε1 =

S2 × R by the map (x, tx) 7→ (x, t).

2. We can identify ε1 with the normal bundle of S2 in R3. This way, we can

think of τS2 ⊕ ε1 as τS2 ⊕ ν2, where ν2 denotes the normal bundle of S2 in

R3. On the other hand, we can prove that τS2 ⊕ ν2 is the trivial product

bundle ε3 = S2 × R3 as follows: first, the elements of the Whitney sum are

quintuples (x, x, v, x, tx) ∈ S2 × S2 ×R3 × S2 ×R3 with x ⊥ v, and second,

the map (x, x, v, x, tx) 7→ (x, v + tx) gives an isomorphism of τS2 ⊕ ν2 with

S2 × R3.

Next, to prove that νf is trivial, we proceed as follows:
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5.2 Constructing the generators of H2(Q;Z)

1. f ∗τnQ is trivial (since Q is s-parallelizable, see Proposition 2.3.6) which sim-

ply means that f ∗τnQ ' S2×Rn = εn wich by the decompositin in 5.1 implies

τS2 ⊕ νf ' S2 × Rn = εn.

2. ε1 ⊕ τS2 ' ε3.

Finally, the proof proceeds according to the following statements:

τS2 ⊕ νf ' εn

if and only if

ε1 ⊕ (τS2 ⊕ νf ) ' ε1 ⊕ εn

if and only if

(ε1 ⊕ τS2)⊕ νf ' εn+1

if and only if

ε2+1 ⊕ νf ' εn+1.

And thus from Lemma 2.3.3 we conclude the triviality of νf .

�

5.2 Constructing the generators of H2(Q;Z)

Now that we have established the existence of these special imbedded spheres, our

task is to prove that they can be effectively found by a trial an error algorithm,

as we sketch next:

Claim 2. There is a procedure that finds imbedded spheres (in Q) realizing the

generators of H2(Q;Z).

Justification. First we must emphasize that the existence of these disjoint spheres

is guaranteed by the previous discussion. The issue at hand is establishing their

existence algorithmically.

From the description of Q we have at our disposal a corresponding triangu-

lation and thus, the finitely many generators of H2(Q;Z) can be represented by
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5.3 Killing H2(Q;Z) by surgery

associated simplicial chains. In order to realize these generators we look for a

collection of disjoint polynomial imbeddings

f : S2 −→ N ′(Q),

where N ′(Q) is a sufficiently small open neighbourhood of Q, for example deter-

mined by half the injectivity radius of the normal exponential map for Q. For any

such imbedding, we check whether its orthogonal projection to Q is an imbedded

sphere. We notice that the determination of the injectivity radius and the normal

vectors to Q, are semi-algebraic operations, see for example (Nab96, p. 15), and

since Q along with f are semi-algebraic, this requirement, along with the dis-

jointness of all the imbedded spheres, constitute a semi-algebraic condition and

thus, by Tarski-Seidenberg, it can be checked algorithmically, for every fixed list

of rational numbers representing the components of the polynomial mapping f .

It then follows that we can generate these polynomial imbeddings systematically,

verifying each time whether it represents an imbedded sphere realizing one of the

generators of H2(Q;Z).

�

5.3 Killing H2(Q;Z) by surgery

Now that we have proved that these spheres have trivial normal bundles and that

have been effectively found, we are going to kill one by one these generators by

surgeries, and we would like to perform these surgeries inside Rn+1.

At the beginning, the closed unbounded component U of the complement of

Q is a deformation retract of Rn+1 \K, since by the Collar Theorem, the space

N \K is homeomorphic smoothly to ∂N × [0 , 1). But using general position, as

in the proof of Lemma 3.2 in (PV12), it can be proved that the pointed space

(Rn+1 \K, ∗) is 2-connected, that is, Rn+1 \K is 2-connected. Thus any imbedded

sphere σ : S2 −→ Q ⊂ U , realizing a generator of H2(Q;Z), will be null homotopic

in U . If n+ 1 ≥ 7 then, by Corollary 15.7 (Bre93), we can realize this homotopy

by a 3-disc imbedded in U , meeting Q transversally along σ. On the other hand,

if n+1 = 6, then one must also apply the Whitney trick to get the corresponding
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5.4 Smoothing out effectively

imbedded 3-disc. This guarantees that we can perform the first surgery inside

Rn+1, generating a corresponding space Q1.

Once we iterate this process and perform j surgeries, the corresponding effect

of these surgeries is a new space Qj. To show that the next surgery can be

done inside Rn+1 we need to prove that the first and second homotopy groups

of the outer connected component U j of the complement of Qj are trivial. But

Qj is the boundary of a tubular neighbourhood of a 3-dimensional complex Kj

imbedded in Rn+1. Thus, U j is homotopy equivalent to the complement of Kj.

If n + 1 ≥ 7, this implies that U j is 2-connected. If n + 1 = 6, this immediately

implies that U j is simply connected. In order to show that π2(U j) is trivial, we

first note the following: since U j is simply connected and therefore 1-connected,

by the Hurewicz Theorem we obtain the equality π2(U j) = H2(U j;Z). Next we

observe that H2(K;Z) is free abelian 1 and Kj is obtained from K by adding

3-cells killing several linearly independent generators of H2(K;Z), and thus we

obtain that H3(Kj) is trivial. Now it olny remains to apply the Alexander Duality

Theorem.

Once all the required surgeries have been performed and all generators of the

second homology group of Q will be killed, we obtain a new hypersurface Q′

whose corners must be smoothed out. (See for example (Cai61)). This smooth-

ing process generates a new hypersurface S, which is the boundary of a small

neighbourhood of a finite 3-dimensional acyclic complex K, whith π1(K) = π. It

follows from the Collar Theorem and Lemma 2.2.18 that the fundamental group

of the constructed hypersurface is isomorphic to π1(K), and thus to π.

The final conclusion is that the homology of Q′ (and similarly that of S)

coincides with that of an n-sphere, consequently the non-singular algebraic hy-

persurface S is a homology n-sphere.

5.4 Smoothing out effectively

Finally, all that remains is to verify that the previous construction is effective,

which is the substance of the following statement.

1If X is an n-dimensional CW complex, then Hn(X) is free.
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5.4 Smoothing out effectively

Claim 3 The smoothing out of Q′, which generates the hypersurface S, can in

fact be performed effectively.

Justification. We describe how to perform the smoothing of the corners on the

last stage above. What we want is to find a polynomial

p(x1, . . . , xn+1) =
∑

i=(i1,...,in+1)

Tix
i1
1 · · ·x

in+1

n+1 ∈ Q[x1, . . . , xn+1]

whose gradient does not vanish at any point of its zero set Z(p) and so that

p generates a non-singular hypersurface S approximating the piecewise smooth

hypersurface Q′.

Specifically, let r(Z(p)) denote the injectivity radius of the normal exponential

map for Z(p). We require that on the normal to every point x ∈ Z(p) there exists

a single point y(x) ∈ Q′ such that ‖x− y(x)‖ < r(Z(p))
2

and the map

h : Z(p) −→ Q′

x 7→ y(x)

be a homeomorphism.

Next we show that this condition can be written as a first-order formula of

the theory of real closed fields. For convenience, we use the notation

φ(z, u) ≡ (z − u) ‖ ν(u)

where ν(u) denotes the unit normal to Z(p) at u. Now, we formalize the following

conditions:

1. The correspondence h is a function from Z(p) into Q′:

∀x ∈ Z(p)∃!y(x) ∈ Q′ φ(y(x), x).

2. h is injective:

∀u, v ∈ Z(p)∀w ∈ Q′ [φ(w, u) ∧ φ(w, v) =⇒ u = v] .

3. h is a homeomorphism (from 1 and 2 it suffices to represent the continuity

of y(x), since Z(p) is compact):

[∀x ∈ Z(p)∀ε > 0∃δ > 0 ∀x′ ∈ Z(p)]

[‖x− x′‖ < δ =⇒ ∀u, v ∈ Q′ (φ(u, x) ∧ φ(v, x′) =⇒ ‖u− v‖ < ε)] .
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5.5 Conclusions

But the outer unit normal ν is a semi-algebraic function of Z(p) and the injectivity

radius r(Z(p)) of the normal exponential map for Z(p) is a semi-algebraic function

of the coefficients of p. It then follows, from the properties in section 4.2, that the

formalization of our requirement generates a semi-algebraic condition. By virtue

of the Tarski-Seidenberg Theorem this semi-algebraic condition can be verified

effectively for every fixed vector of coefficients of n+ 1 variables.

Finally, what remains is to generate systematically the polynomials in Q[x1, . . . , xn+1]

and find p satisfying the previous condition. The search for p might be carried

out as follows. We use the following notation: given a polynomial

p(x1, . . . , xn+1) =
∑

i=(i1,...,in+1)

Tix
i1
1 · · ·x

in+1

n+1 ∈ Q[x1, . . . , xn+1]

and M ∈ N, we will say that the weight of p, wp, is less than or equal to the

constant M if deg(p), |Ti| ≤M .

It is clear then, that for all M ∈ N the set {p ∈ Q[x1, . . . , xn+1] |wp ≤ M} is

a finite set.

Now, the search for p will proceed as follows: at stage k, the algorithm gen-

erates systematically the finitely many polynomials p ∈ Q[x1, . . . , xn+1] of weight

at most 2k and checks whether the polynomial p satisfies the required condition.

As we have already mentioned, this can be done by virtue of Tarski- Seidenberg.

This procedure eventually halts and finds the desired polynomial because of the

already proven existence.

�

5.5 Conclusions

Putting together the previous argument, we obtain the following result illustrating

the intimate connection between superperfect groups and homology spheres.

Theorem 5.5.1 Let us assume n ≥ 5. Given an effectively constructed sequence

of superperfect groups {G̃i} we can effectively construct a sequence of compact

non-singular algebraic hypersurfaces Si ⊂ Rn+1, satisfying the following condi-

tions:
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5.5 Conclusions

(i) The Si are homology spheres.

(ii) For all i ≥ 1 π1(Si) = G̃i.

We finally arrive to the main result of this monograph, dealing with the un-

recognazibility of the n-spheres for n ≥ 5. As we mentioned before, the statement

of the next theorem, along with its proof, follows the exposition that appeared

in the appendix of (Nab95).

Theorem 5.5.2 For any n ≥ 5 there is no algorithm which for a given polyno-

mial p ∈ Q[x1, . . . , xn] whose zero set Z(p) is a non-singular algebraic hypersur-

face decides whether or not Z(p) is diffeomorphic to the sphere Sn.

Proof. Let us suppose that exists such procedure. From Theorem 4.4.2 there

exists a Novikov sequence {G̃i} whose elements are finite presentations of su-

perperfect groups. Now it follows from the previous theorem that we can gen-

erate effectively a sequence of non-singular hypersurfaces Si ⊂ Rn+1. We also

know that these Si are homology spheres obtained as zero sets of polynomials

p ∈ Q[x1, . . . , xn+1]. Even more, we also have that π1(Si) = G̃i, for i ≥ 1. Now

if we apply our procedure to the elements of the sequence {Si} we could decide

which Si are diffeomorphic to the n-sphere. But from Corollary 2.2.16 that means

that we could solve the Triviality Problem for the Novikov sequence {G̃i}, which

is impossible.

�

We conclude by showing that Novikov’s theorem implies, for n ≥ 5, the un-

recognizability of all compact n-dimensional manifolds. See (CL06, p. 332).

Theorem 5.5.3 Given any compact manifold M0 of dimension n ≥ 5, there is

no algorithm that recognize M0 among the class of all compact n-dimensional

manifolds.

Proof. Suppose for simplicity that M0 is a connected n-dimensional manifold

(possibly with a boundary or non-compact), which can be effectively recognized

among the class of all compact n-dimensional manifolds. We will show that in
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5.5 Conclusions

this case it would be possible to recognize the n-dimensional sphere Sn, which

would contradict the Theorem 5.5.2. Let M be a compact n-dimensional manifold

effectively generated from a Novikov sequence of groups. Let M1 be its connected

sum with M0, i.e., M1 = M0#M . Now, apply our procedure to recognize M0 to

M1. If the answer is No, it is clear that M is not a sphere. If the answer is

Yes, note that the fundamental group of M is the trivial group. Indeed, the

fundamental group of M1 is a free product of the fundamental groups of M and

M0, at the same time it must coincide with the fundamental group of M0. This

is possible only if M is simply connected because the rank of a free product

of two groups is equal to the sum of the ranks of the two free factors (this is a

consequence of Grushko’s theorem, see for example (Rot94, p. 393)). But the only

simply connected n-dimensional manifold generated from a Novikov sequence of

groups is the n-sphere. Thus, the recognizability of M0 implies the recognizability

of the sphere, which is impossible.

�
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